Cargando…
Mycorrhizal Fungi Respond to Resource Inequality by Moving Phosphorus from Rich to Poor Patches across Networks
The world’s ecosystems are characterized by an unequal distribution of resources [1]. Trade partnerships between organisms of different species—mutualisms—can help individuals cope with such resource inequality [2, 3, 4]. Trade allows individuals to exchange commodities they can provide at low cost...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584331/ https://www.ncbi.nlm.nih.gov/pubmed/31178314 http://dx.doi.org/10.1016/j.cub.2019.04.061 |
_version_ | 1783428496181166080 |
---|---|
author | Whiteside, Matthew D. Werner, Gijsbert D.A. Caldas, Victor E.A. van’t Padje, Anouk Dupin, Simon E. Elbers, Bram Bakker, Milenka Wyatt, Gregory A.K. Klein, Malin Hink, Mark A. Postma, Marten Vaitla, Bapu Noë, Ronald Shimizu, Thomas S. West, Stuart A. Kiers, E. Toby |
author_facet | Whiteside, Matthew D. Werner, Gijsbert D.A. Caldas, Victor E.A. van’t Padje, Anouk Dupin, Simon E. Elbers, Bram Bakker, Milenka Wyatt, Gregory A.K. Klein, Malin Hink, Mark A. Postma, Marten Vaitla, Bapu Noë, Ronald Shimizu, Thomas S. West, Stuart A. Kiers, E. Toby |
author_sort | Whiteside, Matthew D. |
collection | PubMed |
description | The world’s ecosystems are characterized by an unequal distribution of resources [1]. Trade partnerships between organisms of different species—mutualisms—can help individuals cope with such resource inequality [2, 3, 4]. Trade allows individuals to exchange commodities they can provide at low cost for resources that are otherwise impossible or more difficult to access [5, 6]. However, as resources become increasingly patchy in time or space, it is unknown how organisms alter their trading strategies [7, 8]. Here, we show how a symbiotic fungus mediates trade with a host root in response to different levels of resource inequality across its network. We developed a quantum-dot-tracking technique to quantify phosphorus-trading strategies of arbuscular mycorrhizal fungi simultaneously exposed to rich and poor resource patches. By following fluorescent nanoparticles of different colors across fungal networks, we determined where phosphorus was hoarded, relocated, and transferred to plant hosts. We found that increasing exposure to inequality stimulated trade. Fungi responded to high resource variation by (1) increasing the total amount of phosphorus distributed to host roots, (2) decreasing allocation to storage, and (3) differentially moving resources within the network from rich to poor patches. Using single-particle tracking and high-resolution video, we show how dynamic resource movement may help the fungus capitalize on value differences across the trade network, physically moving resources to areas of high demand to gain better returns. Such translocation strategies can help symbiotic organisms cope with exposure to resource inequality. |
format | Online Article Text |
id | pubmed-6584331 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-65843312019-06-27 Mycorrhizal Fungi Respond to Resource Inequality by Moving Phosphorus from Rich to Poor Patches across Networks Whiteside, Matthew D. Werner, Gijsbert D.A. Caldas, Victor E.A. van’t Padje, Anouk Dupin, Simon E. Elbers, Bram Bakker, Milenka Wyatt, Gregory A.K. Klein, Malin Hink, Mark A. Postma, Marten Vaitla, Bapu Noë, Ronald Shimizu, Thomas S. West, Stuart A. Kiers, E. Toby Curr Biol Article The world’s ecosystems are characterized by an unequal distribution of resources [1]. Trade partnerships between organisms of different species—mutualisms—can help individuals cope with such resource inequality [2, 3, 4]. Trade allows individuals to exchange commodities they can provide at low cost for resources that are otherwise impossible or more difficult to access [5, 6]. However, as resources become increasingly patchy in time or space, it is unknown how organisms alter their trading strategies [7, 8]. Here, we show how a symbiotic fungus mediates trade with a host root in response to different levels of resource inequality across its network. We developed a quantum-dot-tracking technique to quantify phosphorus-trading strategies of arbuscular mycorrhizal fungi simultaneously exposed to rich and poor resource patches. By following fluorescent nanoparticles of different colors across fungal networks, we determined where phosphorus was hoarded, relocated, and transferred to plant hosts. We found that increasing exposure to inequality stimulated trade. Fungi responded to high resource variation by (1) increasing the total amount of phosphorus distributed to host roots, (2) decreasing allocation to storage, and (3) differentially moving resources within the network from rich to poor patches. Using single-particle tracking and high-resolution video, we show how dynamic resource movement may help the fungus capitalize on value differences across the trade network, physically moving resources to areas of high demand to gain better returns. Such translocation strategies can help symbiotic organisms cope with exposure to resource inequality. Cell Press 2019-06-17 /pmc/articles/PMC6584331/ /pubmed/31178314 http://dx.doi.org/10.1016/j.cub.2019.04.061 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Whiteside, Matthew D. Werner, Gijsbert D.A. Caldas, Victor E.A. van’t Padje, Anouk Dupin, Simon E. Elbers, Bram Bakker, Milenka Wyatt, Gregory A.K. Klein, Malin Hink, Mark A. Postma, Marten Vaitla, Bapu Noë, Ronald Shimizu, Thomas S. West, Stuart A. Kiers, E. Toby Mycorrhizal Fungi Respond to Resource Inequality by Moving Phosphorus from Rich to Poor Patches across Networks |
title | Mycorrhizal Fungi Respond to Resource Inequality by Moving Phosphorus from Rich to Poor Patches across Networks |
title_full | Mycorrhizal Fungi Respond to Resource Inequality by Moving Phosphorus from Rich to Poor Patches across Networks |
title_fullStr | Mycorrhizal Fungi Respond to Resource Inequality by Moving Phosphorus from Rich to Poor Patches across Networks |
title_full_unstemmed | Mycorrhizal Fungi Respond to Resource Inequality by Moving Phosphorus from Rich to Poor Patches across Networks |
title_short | Mycorrhizal Fungi Respond to Resource Inequality by Moving Phosphorus from Rich to Poor Patches across Networks |
title_sort | mycorrhizal fungi respond to resource inequality by moving phosphorus from rich to poor patches across networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584331/ https://www.ncbi.nlm.nih.gov/pubmed/31178314 http://dx.doi.org/10.1016/j.cub.2019.04.061 |
work_keys_str_mv | AT whitesidematthewd mycorrhizalfungirespondtoresourceinequalitybymovingphosphorusfromrichtopoorpatchesacrossnetworks AT wernergijsbertda mycorrhizalfungirespondtoresourceinequalitybymovingphosphorusfromrichtopoorpatchesacrossnetworks AT caldasvictorea mycorrhizalfungirespondtoresourceinequalitybymovingphosphorusfromrichtopoorpatchesacrossnetworks AT vantpadjeanouk mycorrhizalfungirespondtoresourceinequalitybymovingphosphorusfromrichtopoorpatchesacrossnetworks AT dupinsimone mycorrhizalfungirespondtoresourceinequalitybymovingphosphorusfromrichtopoorpatchesacrossnetworks AT elbersbram mycorrhizalfungirespondtoresourceinequalitybymovingphosphorusfromrichtopoorpatchesacrossnetworks AT bakkermilenka mycorrhizalfungirespondtoresourceinequalitybymovingphosphorusfromrichtopoorpatchesacrossnetworks AT wyattgregoryak mycorrhizalfungirespondtoresourceinequalitybymovingphosphorusfromrichtopoorpatchesacrossnetworks AT kleinmalin mycorrhizalfungirespondtoresourceinequalitybymovingphosphorusfromrichtopoorpatchesacrossnetworks AT hinkmarka mycorrhizalfungirespondtoresourceinequalitybymovingphosphorusfromrichtopoorpatchesacrossnetworks AT postmamarten mycorrhizalfungirespondtoresourceinequalitybymovingphosphorusfromrichtopoorpatchesacrossnetworks AT vaitlabapu mycorrhizalfungirespondtoresourceinequalitybymovingphosphorusfromrichtopoorpatchesacrossnetworks AT noeronald mycorrhizalfungirespondtoresourceinequalitybymovingphosphorusfromrichtopoorpatchesacrossnetworks AT shimizuthomass mycorrhizalfungirespondtoresourceinequalitybymovingphosphorusfromrichtopoorpatchesacrossnetworks AT weststuarta mycorrhizalfungirespondtoresourceinequalitybymovingphosphorusfromrichtopoorpatchesacrossnetworks AT kiersetoby mycorrhizalfungirespondtoresourceinequalitybymovingphosphorusfromrichtopoorpatchesacrossnetworks |