Cargando…

MetaNN: accurate classification of host phenotypes from metagenomic data using neural networks

BACKGROUND: Microbiome profiles in the human body and environment niches have become publicly available due to recent advances in high-throughput sequencing technologies. Indeed, recent studies have already identified different microbiome profiles in healthy and sick individuals for a variety of dis...

Descripción completa

Detalles Bibliográficos
Autores principales: Lo, Chieh, Marculescu, Radu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584521/
https://www.ncbi.nlm.nih.gov/pubmed/31216991
http://dx.doi.org/10.1186/s12859-019-2833-2
Descripción
Sumario:BACKGROUND: Microbiome profiles in the human body and environment niches have become publicly available due to recent advances in high-throughput sequencing technologies. Indeed, recent studies have already identified different microbiome profiles in healthy and sick individuals for a variety of diseases; this suggests that the microbiome profile can be used as a diagnostic tool in identifying the disease states of an individual. However, the high-dimensional nature of metagenomic data poses a significant challenge to existing machine learning models. Consequently, to enable personalized treatments, an efficient framework that can accurately and robustly differentiate between healthy and sick microbiome profiles is needed. RESULTS: In this paper, we propose MetaNN (i.e., classification of host phenotypes from Metagenomic data using Neural Networks), a neural network framework which utilizes a new data augmentation technique to mitigate the effects of data over-fitting. CONCLUSIONS: We show that MetaNN outperforms existing state-of-the-art models in terms of classification accuracy for both synthetic and real metagenomic data. These results pave the way towards developing personalized treatments for microbiome related diseases.