Cargando…
MetaNN: accurate classification of host phenotypes from metagenomic data using neural networks
BACKGROUND: Microbiome profiles in the human body and environment niches have become publicly available due to recent advances in high-throughput sequencing technologies. Indeed, recent studies have already identified different microbiome profiles in healthy and sick individuals for a variety of dis...
Autores principales: | Lo, Chieh, Marculescu, Radu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584521/ https://www.ncbi.nlm.nih.gov/pubmed/31216991 http://dx.doi.org/10.1186/s12859-019-2833-2 |
Ejemplares similares
-
MetaShot: an accurate workflow for taxon classification of host-associated microbiome from shotgun metagenomic data
por: Fosso, B, et al.
Publicado: (2017) -
MPLasso: Inferring microbial association networks using prior microbial knowledge
por: Lo, Chieh, et al.
Publicado: (2017) -
ProtNN: fast and accurate protein 3D-structure classification in structural and topological space
por: Dhifli, Wajdi, et al.
Publicado: (2016) -
ExplaiNN: interpretable and transparent neural networks for genomics
por: Novakovsky, Gherman, et al.
Publicado: (2023) -
Accurate and Efficient Intracranial Hemorrhage Detection and Subtype Classification in 3D CT Scans with Convolutional and Long Short-Term Memory Neural Networks
por: Burduja, Mihail, et al.
Publicado: (2020)