Cargando…
Predicting the Young’s Modulus of Silicate Glasses using High-Throughput Molecular Dynamics Simulations and Machine Learning
The application of machine learning to predict materials’ properties usually requires a large number of consistent data for training. However, experimental datasets of high quality are not always available or self-consistent. Here, as an alternative route, we combine machine learning with high-throu...
Autores principales: | Yang, Kai, Xu, Xinyi, Yang, Benjamin, Cook, Brian, Ramos, Herbert, Krishnan, N. M. Anoop, Smedskjaer, Morten M., Hoover, Christian, Bauchy, Mathieu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584533/ https://www.ncbi.nlm.nih.gov/pubmed/31217500 http://dx.doi.org/10.1038/s41598-019-45344-3 |
Ejemplares similares
-
Experimental method to quantify the ring size distribution in silicate glasses and simulation validation thereof
por: Zhou, Qi, et al.
Publicado: (2021) -
Structure Dependence of Poisson’s Ratio in Cesium Silicate and Borate Glasses
por: Østergaard, Martin B., et al.
Publicado: (2020) -
Fracture toughness of a metal–organic framework glass
por: To, Theany, et al.
Publicado: (2020) -
Breaking the Limit of Micro‐Ductility in Oxide Glasses
por: Januchta, Kacper, et al.
Publicado: (2019) -
Vibrational disorder and densification-induced homogenization of local elasticity in silicate glasses
por: Benzine, Omar, et al.
Publicado: (2021)