Cargando…
Contactless cardiac arrest detection using smart devices
Out-of-hospital cardiac arrest is a leading cause of death worldwide. Rapid diagnosis and initiation of cardiopulmonary resuscitation (CPR) is the cornerstone of therapy for victims of cardiac arrest. Yet a significant fraction of cardiac arrest victims have no chance of survival because they experi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584582/ https://www.ncbi.nlm.nih.gov/pubmed/31304398 http://dx.doi.org/10.1038/s41746-019-0128-7 |
Sumario: | Out-of-hospital cardiac arrest is a leading cause of death worldwide. Rapid diagnosis and initiation of cardiopulmonary resuscitation (CPR) is the cornerstone of therapy for victims of cardiac arrest. Yet a significant fraction of cardiac arrest victims have no chance of survival because they experience an unwitnessed event, often in the privacy of their own homes. An under-appreciated diagnostic element of cardiac arrest is the presence of agonal breathing, an audible biomarker and brainstem reflex that arises in the setting of severe hypoxia. Here, we demonstrate that a support vector machine (SVM) can classify agonal breathing instances in real-time within a bedroom environment. Using real-world labeled 9-1-1 audio of cardiac arrests, we train the SVM to accurately classify agonal breathing instances. We obtain an area under the curve (AUC) of 0.9993 ± 0.0003 and an operating point with an overall sensitivity and specificity of 97.24% (95% CI: 96.86–97.61%) and 99.51% (95% CI: 99.35–99.67%). We achieve a false positive rate between 0 and 0.14% over 82 h (117,985 audio segments) of polysomnographic sleep lab data that includes snoring, hypopnea, central, and obstructive sleep apnea events. We also evaluate our classifier in home sleep environments: the false positive rate was 0–0.22% over 164 h (236,666 audio segments) of sleep data collected across 35 different bedroom environments. We prototype our proof-of-concept contactless system using commodity smart devices (Amazon Echo and Apple iPhone) and demonstrate its effectiveness in identifying cardiac arrest-associated agonal breathing instances played over the air. |
---|