Cargando…
Optimal clustering with missing values
BACKGROUND: Missing values frequently arise in modern biomedical studies due to various reasons, including missing tests or complex profiling technologies for different omics measurements. Missing values can complicate the application of clustering algorithms, whose goals are to group points based o...
Autores principales: | Boluki, Shahin, Zamani Dadaneh, Siamak, Qian, Xiaoning, Dougherty, Edward R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584727/ https://www.ncbi.nlm.nih.gov/pubmed/31216989 http://dx.doi.org/10.1186/s12859-019-2832-3 |
Ejemplares similares
-
Bayesian module identification from multiple noisy networks
por: Zamani Dadaneh, Siamak, et al.
Publicado: (2016) -
Covariate-dependent negative binomial factor analysis of RNA sequencing data
por: Zamani Dadaneh, Siamak, et al.
Publicado: (2018) -
Incorporating biological prior knowledge for Bayesian learning via maximal knowledge-driven information priors
por: Boluki, Shahin, et al.
Publicado: (2017) -
Bayesian gamma-negative binomial modeling of single-cell RNA sequencing data
por: Dadaneh, Siamak Zamani, et al.
Publicado: (2020) -
Optimal clustering under uncertainty
por: Dalton, Lori A., et al.
Publicado: (2018)