Cargando…
Hepatic tumor classification using texture and topology analysis of non-contrast-enhanced three-dimensional T1-weighted MR images with a radiomics approach
The purpose of this study is to evaluate the accuracy for classification of hepatic tumors by characterization of T1-weighted magnetic resonance (MR) images using two radiomics approaches with machine learning models: texture analysis and topological data analysis using persistent homology. This stu...
Autores principales: | Oyama, Asuka, Hiraoka, Yasuaki, Obayashi, Ippei, Saikawa, Yusuke, Furui, Shigeru, Shiraishi, Kenshiro, Kumagai, Shinobu, Hayashi, Tatsuya, Kotoku, Jun’ichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584736/ https://www.ncbi.nlm.nih.gov/pubmed/31217445 http://dx.doi.org/10.1038/s41598-019-45283-z |
Ejemplares similares
-
Image quality improvement in cone-beam CT using the super-resolution technique
por: Oyama, Asuka, et al.
Publicado: (2018) -
First experience of (192)Ir source stuck event during high-dose-rate brachytherapy in Japan
por: Kumagai, Shinobu, et al.
Publicado: (2020) -
Fast skin dose estimation system for interventional radiology
por: Takata, Takeshi, et al.
Publicado: (2018) -
Classification of optical coherence tomography images using a capsule network
por: Tsuji, Takumasa, et al.
Publicado: (2020) -
Classification of chest X-ray images by incorporation of medical domain knowledge into operation branch networks
por: Tsuji, Takumasa, et al.
Publicado: (2023)