Cargando…
Investigations on the enhanced dye degradation activity of heterogeneous BiFeO(3)–GdFeO(3) nanocomposite photocatalyst
Perovskite types of nanocomposites of BiFeO(3)–GdFeO(3) (BFO-GFO) has been synthesized using sol-gel route for the first time. The nanocomposite powders were characterized by powder X-Ray diffraction (PXRD) to confirm the existence of mixed crystallographic phases. EDX analysis on nanocomposites est...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584776/ https://www.ncbi.nlm.nih.gov/pubmed/31249888 http://dx.doi.org/10.1016/j.heliyon.2019.e01831 |
_version_ | 1783428575328731136 |
---|---|
author | Subramanian, Yathavan Ramasamy, Venkatapathy Karthikeyan, R.J. Srinivasan, Gokul Raj Arulmozhi, Durairajan Gubendiran, Ramesh Kumar Sriramalu, Mohan |
author_facet | Subramanian, Yathavan Ramasamy, Venkatapathy Karthikeyan, R.J. Srinivasan, Gokul Raj Arulmozhi, Durairajan Gubendiran, Ramesh Kumar Sriramalu, Mohan |
author_sort | Subramanian, Yathavan |
collection | PubMed |
description | Perovskite types of nanocomposites of BiFeO(3)–GdFeO(3) (BFO-GFO) has been synthesized using sol-gel route for the first time. The nanocomposite powders were characterized by powder X-Ray diffraction (PXRD) to confirm the existence of mixed crystallographic phases. EDX analysis on nanocomposites estimates the composition of individual element present in BFO-GFO matrix. The induced strain upon loading GdFeO(3)(GFO) in BiFeO(3) (BFO) matrix has been computed with the aid of Williamson –Hall (W–H) plot. Surface morphologies of nanocomposite powders has been studied using Field Emission Scanning Electron Microscope (FESEM) images. The observed changes in the band gap energies of nanocomposite powders due to the inclusion of GFO has been ascertained from the tauc plots. PL emission of BFO upon loading GFO found to have detected in the IR region due to defect level transition. Finally, the methylene blue dye (MB) degradation characteristics of BFO, GFO and the nanocomposite powders of BFO-GFO have also been studied. The overall results obtained has been discussed in detail. |
format | Online Article Text |
id | pubmed-6584776 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-65847762019-06-27 Investigations on the enhanced dye degradation activity of heterogeneous BiFeO(3)–GdFeO(3) nanocomposite photocatalyst Subramanian, Yathavan Ramasamy, Venkatapathy Karthikeyan, R.J. Srinivasan, Gokul Raj Arulmozhi, Durairajan Gubendiran, Ramesh Kumar Sriramalu, Mohan Heliyon Article Perovskite types of nanocomposites of BiFeO(3)–GdFeO(3) (BFO-GFO) has been synthesized using sol-gel route for the first time. The nanocomposite powders were characterized by powder X-Ray diffraction (PXRD) to confirm the existence of mixed crystallographic phases. EDX analysis on nanocomposites estimates the composition of individual element present in BFO-GFO matrix. The induced strain upon loading GdFeO(3)(GFO) in BiFeO(3) (BFO) matrix has been computed with the aid of Williamson –Hall (W–H) plot. Surface morphologies of nanocomposite powders has been studied using Field Emission Scanning Electron Microscope (FESEM) images. The observed changes in the band gap energies of nanocomposite powders due to the inclusion of GFO has been ascertained from the tauc plots. PL emission of BFO upon loading GFO found to have detected in the IR region due to defect level transition. Finally, the methylene blue dye (MB) degradation characteristics of BFO, GFO and the nanocomposite powders of BFO-GFO have also been studied. The overall results obtained has been discussed in detail. Elsevier 2019-06-18 /pmc/articles/PMC6584776/ /pubmed/31249888 http://dx.doi.org/10.1016/j.heliyon.2019.e01831 Text en © 2019 Published by Elsevier Ltd. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Subramanian, Yathavan Ramasamy, Venkatapathy Karthikeyan, R.J. Srinivasan, Gokul Raj Arulmozhi, Durairajan Gubendiran, Ramesh Kumar Sriramalu, Mohan Investigations on the enhanced dye degradation activity of heterogeneous BiFeO(3)–GdFeO(3) nanocomposite photocatalyst |
title | Investigations on the enhanced dye degradation activity of heterogeneous BiFeO(3)–GdFeO(3) nanocomposite photocatalyst |
title_full | Investigations on the enhanced dye degradation activity of heterogeneous BiFeO(3)–GdFeO(3) nanocomposite photocatalyst |
title_fullStr | Investigations on the enhanced dye degradation activity of heterogeneous BiFeO(3)–GdFeO(3) nanocomposite photocatalyst |
title_full_unstemmed | Investigations on the enhanced dye degradation activity of heterogeneous BiFeO(3)–GdFeO(3) nanocomposite photocatalyst |
title_short | Investigations on the enhanced dye degradation activity of heterogeneous BiFeO(3)–GdFeO(3) nanocomposite photocatalyst |
title_sort | investigations on the enhanced dye degradation activity of heterogeneous bifeo(3)–gdfeo(3) nanocomposite photocatalyst |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584776/ https://www.ncbi.nlm.nih.gov/pubmed/31249888 http://dx.doi.org/10.1016/j.heliyon.2019.e01831 |
work_keys_str_mv | AT subramanianyathavan investigationsontheenhanceddyedegradationactivityofheterogeneousbifeo3gdfeo3nanocompositephotocatalyst AT ramasamyvenkatapathy investigationsontheenhanceddyedegradationactivityofheterogeneousbifeo3gdfeo3nanocompositephotocatalyst AT karthikeyanrj investigationsontheenhanceddyedegradationactivityofheterogeneousbifeo3gdfeo3nanocompositephotocatalyst AT srinivasangokulraj investigationsontheenhanceddyedegradationactivityofheterogeneousbifeo3gdfeo3nanocompositephotocatalyst AT arulmozhidurairajan investigationsontheenhanceddyedegradationactivityofheterogeneousbifeo3gdfeo3nanocompositephotocatalyst AT gubendiranrameshkumar investigationsontheenhanceddyedegradationactivityofheterogeneousbifeo3gdfeo3nanocompositephotocatalyst AT sriramalumohan investigationsontheenhanceddyedegradationactivityofheterogeneousbifeo3gdfeo3nanocompositephotocatalyst |