Cargando…
Human health benefit and burden of the schizophrenia health care pathway in Belgium: paliperidone palmitate long-acting injections
BACKGROUND: Environmental impact assessments of pharmaceuticals typically consider only a part of the pharmaceutical supply chain, e.g. tablet formulation. While the environmental impact can be expressed in environmental Human Health burden due to resource use and emissions, the Human Health benefit...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6585029/ https://www.ncbi.nlm.nih.gov/pubmed/31217000 http://dx.doi.org/10.1186/s12913-019-4247-2 |
Sumario: | BACKGROUND: Environmental impact assessments of pharmaceuticals typically consider only a part of the pharmaceutical supply chain, e.g. tablet formulation. While the environmental impact can be expressed in environmental Human Health burden due to resource use and emissions, the Human Health benefit of the pharmaceutical treatment of patients is currently not simultaneously taken into account. The study aims include a cradle-to-grave assessment of all Human Health impacts of the production, administration and disposal of two antipsychotics for the treatment of schizophrenia. This is complemented with the environmental impact of health care providers such as hospitals. The aim is to holistically quantify to what extent the environmental Human Health burden compares to the Human Health benefit associated with the treatment. METHODS: We applied an overall framework which included Life Cycle Assessment to model the environmental Human Health impacts of the pharmaceutical supply chain, administration and disposal of the drug and health care providers. To model the patient benefit, this was complemented with a Markov model with a 1-year time horizon. Three patient groups were modeled: medicine coverage of paliperidone palmitate for either one month (PP1M) or three months (PP3M) at a time, and compared to Treatment Interruption (TI) as a control group. Outcomes were quantified using Years of Life Lost (YLL), Years Lived with Disability (YLD) and Disability-Adjusted Life Years (DALY). RESULTS: The main environmental impacts were visits to the psychiatrist and psychiatric hospitals. The pharmaceutical supply chain had a limited impact. For 1000 patients for 1 year, PP1M and PP3M respectively avoided 0.38 and 0.49 environmental DALYs compared to TI. PP1M and PP3M further avoided 45.60 and 57.87 YLL and 23.31 and 29.91 YLD compared to TI. The main outcome was the sum of environmental DALYs, YLL and YLD, in which PP1M and PP3M respectively avoided 69.29 and 88.26 DALYs. Alternative analysis of Quality-Adjusted Life Years confirmed the results. CONCLUSIONS: The overall environmental burden was lower for PP1M and PP3M treatment than Treatment Interruption because patients are kept more stable, which reduces the environmental burden due to hospitals. Moreover, the Human Health burden was outweighed by the Human Health benefit. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12913-019-4247-2) contains supplementary material, which is available to authorized users. |
---|