Cargando…
Machine learning techniques for personalized breast cancer risk prediction: comparison with the BCRAT and BOADICEA models
BACKGROUND: Comprehensive breast cancer risk prediction models enable identifying and targeting women at high-risk, while reducing interventions in those at low-risk. Breast cancer risk prediction models used in clinical practice have low discriminatory accuracy (0.53–0.64). Machine learning (ML) of...
Autores principales: | Ming, Chang, Viassolo, Valeria, Probst-Hensch, Nicole, Chappuis, Pierre O., Dinov, Ivo D., Katapodi, Maria C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6585114/ https://www.ncbi.nlm.nih.gov/pubmed/31221197 http://dx.doi.org/10.1186/s13058-019-1158-4 |
Ejemplares similares
-
Machine learning-based lifetime breast cancer risk reclassification compared with the BOADICEA model: impact on screening recommendations
por: Ming, Chang, et al.
Publicado: (2020) -
Letter to the editor: Response to Giardiello D, Antoniou AC, Mariani L, Easton DF, Steyerberg EW
por: Ming, Chang, et al.
Publicado: (2020) -
Cancer Predisposition Cascade Screening for Hereditary Breast/Ovarian Cancer and Lynch Syndromes in Switzerland: Study Protocol
por: Katapodi, Maria C, et al.
Publicado: (2017) -
Clinical software development for the Web: lessons learned from the BOADICEA project
por: Cunningham, Alex P, et al.
Publicado: (2012) -
The BOADICEA model of genetic susceptibility to breast and ovarian cancer
por: Antoniou, A C, et al.
Publicado: (2004)