Cargando…

CCRDB: a cancer circRNAs-related database and its application in hepatocellular carcinoma-related circRNAs

Circular RNAs (circRNAs) are widely expressed in human cells and tissues and can form a covalently closed exon circularization, which have stable patterns and play important regulatory roles in physiological or pathological process. There is still lack of a comprehensively disease-related knowledge...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Qingyu, Cai, Yanning, Xiong, Haiquan, Deng, Yiyun, Dai, Xianhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6585150/
https://www.ncbi.nlm.nih.gov/pubmed/31219565
http://dx.doi.org/10.1093/database/baz063
Descripción
Sumario:Circular RNAs (circRNAs) are widely expressed in human cells and tissues and can form a covalently closed exon circularization, which have stable patterns and play important regulatory roles in physiological or pathological process. There is still lack of a comprehensively disease-related knowledge base for in-depth analysis of circRNAs. In this paper, a cancer circRNAs-related database (CCRDB) was established. The CCRDB’s initial circRNAs data were collected by sequencing experimental data of 10 samples from 5 patients with hepatocellular carcinoma (HCC), where a total of 11 501 circRNAs were found and can easily be expanded by collecting and analyzing external data sources such as circBASE (1). Using CCRDB, we have further studied the relationships between circRNAs and HCC and found that circRNAs (hsa_circ_ 0002130, hsa_circ_0084615, hsa_circ_0001445, hsa_circ_0001727 and hsa_circ_0001361) and the corresponding genes ID [C3 (2, 3), ASPH (4), SMARCA5 (5), ZKSCAN1 (6) and FNDC3B (7)], respectively, might be the potential biomarker targets for HCC. Furthermore, our experiment also found that some new circRNAs chromosome sites chr12:23998917 24048958 and chr16:72090429 72093087 and the corresponding genes ID (SOX5 (8) and HP (9), respectively), might be the potential biomarker targets for HCC. These results indicate that CCRDB can effectively reveal the relationships between circRNAs and HCC. As the first circRNAs database to provide analysis and comparison functions, it is of great significance for researchers to further study the rules of circRNAs, to understand the causes of circRNAs in disease discovery and to find target genes for therapeutic approaches.