Cargando…
Combining multiple imputation and bootstrap in the analysis of cost‐effectiveness trial data
In healthcare cost‐effectiveness analysis, probability distributions are typically skewed and missing data are frequent. Bootstrap and multiple imputation are well‐established resampling methods for handling skewed and missing data. However, it is not clear how these techniques should be combined. T...
Autores principales: | Brand, Jaap, van Buuren, Stef, le Cessie, Saskia, van den Hout, Wilbert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6585698/ https://www.ncbi.nlm.nih.gov/pubmed/30207407 http://dx.doi.org/10.1002/sim.7956 |
Ejemplares similares
-
Variable selection under multiple imputation using the bootstrap in a prognostic study
por: Heymans, Martijn W, et al.
Publicado: (2007) -
Flexible imputation of missing data
por: van Buuren, Stef
Publicado: (2018) -
Missing Data in Clinical Research: A Tutorial on Multiple Imputation
por: Austin, Peter C., et al.
Publicado: (2021) -
The effect of high prevalence of missing data on estimation of the coefficients of a logistic regression model when using multiple imputation
por: Austin, Peter C., et al.
Publicado: (2022) -
Graphical and numerical diagnostic tools to assess multiple imputation models by posterior predictive checking
por: Cai, Mingyang, et al.
Publicado: (2023)