Cargando…
Human mesenchymal stromal cells in adhesion to cell‐derived extracellular matrix and titanium: Comparative kinome profile analysis
The extracellular matrix (ECM) physically supports cells and influences stem cell behaviour, modulating kinase‐mediated signalling cascades. Cell‐derived ECMs have emerged in bone regeneration as they reproduce physiological tissue‐architecture and ameliorate mesenchymal stromal cell (MSC) propertie...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6585805/ https://www.ncbi.nlm.nih.gov/pubmed/30058720 http://dx.doi.org/10.1002/jcp.27116 |
_version_ | 1783428778065657856 |
---|---|
author | Baroncelli, Marta Fuhler, Gwenny M. van de Peppel, Jeroen Zambuzzi, Willian F. van Leeuwen, Johannes P. van der Eerden, Bram C. J. Peppelenbosch, Maikel P. |
author_facet | Baroncelli, Marta Fuhler, Gwenny M. van de Peppel, Jeroen Zambuzzi, Willian F. van Leeuwen, Johannes P. van der Eerden, Bram C. J. Peppelenbosch, Maikel P. |
author_sort | Baroncelli, Marta |
collection | PubMed |
description | The extracellular matrix (ECM) physically supports cells and influences stem cell behaviour, modulating kinase‐mediated signalling cascades. Cell‐derived ECMs have emerged in bone regeneration as they reproduce physiological tissue‐architecture and ameliorate mesenchymal stromal cell (MSC) properties. Titanium scaffolds show good mechanical properties, facilitate cell adhesion, and have been routinely used for bone tissue engineering (BTE). We analyzed the kinomic signature of human MSCs in adhesion to an osteopromotive osteoblast‐derived ECM, and compared it to MSCs on titanium. PamChip kinase‐array analysis revealed 63 phosphorylated peptides on ECM and 59 on titanium, with MSCs on ECM exhibiting significantly higher kinase activity than on titanium. MSCs on the two substrates showed overlapping kinome profiles, with activation of similar signalling pathways (FAK, ERK, and PI3K signalling). Inhibition of PI3K signalling in cells significantly reduced adhesion to ECM and increased the number of nonadherent cells on both substrates. In summary, this study comprehensively characterized the kinase activity in MSCs on cell‐derived ECM and titanium, highlighting the role of PI3K signalling in kinomic changes regulating osteoblast viability and adhesion. Kinome profile analysis represents a powerful tool to select pathways to better understand cell behaviour. Osteoblast‐derived ECM could be further investigated as titanium scaffold‐coating to improve BTE. |
format | Online Article Text |
id | pubmed-6585805 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-65858052019-06-27 Human mesenchymal stromal cells in adhesion to cell‐derived extracellular matrix and titanium: Comparative kinome profile analysis Baroncelli, Marta Fuhler, Gwenny M. van de Peppel, Jeroen Zambuzzi, Willian F. van Leeuwen, Johannes P. van der Eerden, Bram C. J. Peppelenbosch, Maikel P. J Cell Physiol Original Research Articles The extracellular matrix (ECM) physically supports cells and influences stem cell behaviour, modulating kinase‐mediated signalling cascades. Cell‐derived ECMs have emerged in bone regeneration as they reproduce physiological tissue‐architecture and ameliorate mesenchymal stromal cell (MSC) properties. Titanium scaffolds show good mechanical properties, facilitate cell adhesion, and have been routinely used for bone tissue engineering (BTE). We analyzed the kinomic signature of human MSCs in adhesion to an osteopromotive osteoblast‐derived ECM, and compared it to MSCs on titanium. PamChip kinase‐array analysis revealed 63 phosphorylated peptides on ECM and 59 on titanium, with MSCs on ECM exhibiting significantly higher kinase activity than on titanium. MSCs on the two substrates showed overlapping kinome profiles, with activation of similar signalling pathways (FAK, ERK, and PI3K signalling). Inhibition of PI3K signalling in cells significantly reduced adhesion to ECM and increased the number of nonadherent cells on both substrates. In summary, this study comprehensively characterized the kinase activity in MSCs on cell‐derived ECM and titanium, highlighting the role of PI3K signalling in kinomic changes regulating osteoblast viability and adhesion. Kinome profile analysis represents a powerful tool to select pathways to better understand cell behaviour. Osteoblast‐derived ECM could be further investigated as titanium scaffold‐coating to improve BTE. John Wiley and Sons Inc. 2018-07-30 2019-03 /pmc/articles/PMC6585805/ /pubmed/30058720 http://dx.doi.org/10.1002/jcp.27116 Text en © 2018 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Articles Baroncelli, Marta Fuhler, Gwenny M. van de Peppel, Jeroen Zambuzzi, Willian F. van Leeuwen, Johannes P. van der Eerden, Bram C. J. Peppelenbosch, Maikel P. Human mesenchymal stromal cells in adhesion to cell‐derived extracellular matrix and titanium: Comparative kinome profile analysis |
title | Human mesenchymal stromal cells in adhesion to cell‐derived extracellular matrix and titanium: Comparative kinome profile analysis |
title_full | Human mesenchymal stromal cells in adhesion to cell‐derived extracellular matrix and titanium: Comparative kinome profile analysis |
title_fullStr | Human mesenchymal stromal cells in adhesion to cell‐derived extracellular matrix and titanium: Comparative kinome profile analysis |
title_full_unstemmed | Human mesenchymal stromal cells in adhesion to cell‐derived extracellular matrix and titanium: Comparative kinome profile analysis |
title_short | Human mesenchymal stromal cells in adhesion to cell‐derived extracellular matrix and titanium: Comparative kinome profile analysis |
title_sort | human mesenchymal stromal cells in adhesion to cell‐derived extracellular matrix and titanium: comparative kinome profile analysis |
topic | Original Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6585805/ https://www.ncbi.nlm.nih.gov/pubmed/30058720 http://dx.doi.org/10.1002/jcp.27116 |
work_keys_str_mv | AT baroncellimarta humanmesenchymalstromalcellsinadhesiontocellderivedextracellularmatrixandtitaniumcomparativekinomeprofileanalysis AT fuhlergwennym humanmesenchymalstromalcellsinadhesiontocellderivedextracellularmatrixandtitaniumcomparativekinomeprofileanalysis AT vandepeppeljeroen humanmesenchymalstromalcellsinadhesiontocellderivedextracellularmatrixandtitaniumcomparativekinomeprofileanalysis AT zambuzziwillianf humanmesenchymalstromalcellsinadhesiontocellderivedextracellularmatrixandtitaniumcomparativekinomeprofileanalysis AT vanleeuwenjohannesp humanmesenchymalstromalcellsinadhesiontocellderivedextracellularmatrixandtitaniumcomparativekinomeprofileanalysis AT vandereerdenbramcj humanmesenchymalstromalcellsinadhesiontocellderivedextracellularmatrixandtitaniumcomparativekinomeprofileanalysis AT peppelenboschmaikelp humanmesenchymalstromalcellsinadhesiontocellderivedextracellularmatrixandtitaniumcomparativekinomeprofileanalysis |