Cargando…
An integration of deep learning with feature embedding for protein–protein interaction prediction
Protein–protein interactions are closely relevant to protein function and drug discovery. Hence, accurately identifying protein–protein interactions will help us to understand the underlying molecular mechanisms and significantly facilitate the drug discovery. However, the majority of existing compu...
Autores principales: | Yao, Yu, Du, Xiuquan, Diao, Yanyu, Zhu, Huaixu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6585896/ https://www.ncbi.nlm.nih.gov/pubmed/31245182 http://dx.doi.org/10.7717/peerj.7126 |
Ejemplares similares
-
Prediction of DNA binding proteins using local features and long-term dependencies with primary sequences based on deep learning
por: Li, Guobin, et al.
Publicado: (2021) -
Supervised deep learning embeddings for the prediction of cervical cancer diagnosis
por: Fernandes, Kelwin, et al.
Publicado: (2018) -
SETH predicts nuances of residue disorder from protein embeddings
por: Ilzhöfer, Dagmar, et al.
Publicado: (2022) -
Multi-level machine learning prediction of protein–protein interactions in Saccharomyces cerevisiae
por: Zubek, Julian, et al.
Publicado: (2015) -
Protein function prediction with gene ontology: from traditional to deep learning models
por: Vu, Thi Thuy Duong, et al.
Publicado: (2021)