Cargando…

PhD7Faster 2.0: predicting clones propagating faster from the Ph.D.-7 phage display library by coupling PseAAC and tripeptide composition

Selection from phage display libraries empowers isolation of high-affinity ligands for various targets. However, this method also identifies propagation-related target-unrelated peptides (PrTUPs). These false positive hits appear because of their amplification advantages. In this report, we present...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Bifang, Chen, Heng, Huang, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6585900/
https://www.ncbi.nlm.nih.gov/pubmed/31245183
http://dx.doi.org/10.7717/peerj.7131
Descripción
Sumario:Selection from phage display libraries empowers isolation of high-affinity ligands for various targets. However, this method also identifies propagation-related target-unrelated peptides (PrTUPs). These false positive hits appear because of their amplification advantages. In this report, we present PhD7Faster 2.0 for predicting fast-propagating clones from the Ph.D.-7 phage display library, which was developed based on the support vector machine. Feature selection was performed against PseAAC and tripeptide composition using the incremental feature selection method. Ten-fold cross-validation results show that PhD7Faster 2.0 succeeds a decent performance with the accuracy of 81.84%, the Matthews correlation coefficient of 0.64 and the area under the ROC curve of 0.90. The permutation test with 1,000 shuffles resulted in p < 0.001. We implemented PhD7Faster 2.0 into a publicly accessible web tool (http://i.uestc.edu.cn/sarotup3/cgi-bin/PhD7Faster.pl) and constructed standalone graphical user interface and command-line versions for different systems. The standalone PhD7Faster 2.0 is able to detect PrTUPs within small datasets as well as large-scale datasets. This makes PhD7Faster 2.0 an enhanced and powerful tool for scanning and reporting faster-growing clones from the Ph.D.-7 phage display library.