Cargando…

Hypoxia and the group VII ethylene response transcription factor HRE2 promote adventitious root elongation in Arabidopsis

Soil water‐logging and flooding are common environmental stress conditions that can impair plant fitness. Roots are the first organs to be confronted with reduced oxygen tension as a result of flooding. While anatomical and morphological adaptations of roots are extensively studied, the root system...

Descripción completa

Detalles Bibliográficos
Autores principales: Eysholdt‐Derzsó, E., Sauter, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6585952/
https://www.ncbi.nlm.nih.gov/pubmed/29996004
http://dx.doi.org/10.1111/plb.12873
Descripción
Sumario:Soil water‐logging and flooding are common environmental stress conditions that can impair plant fitness. Roots are the first organs to be confronted with reduced oxygen tension as a result of flooding. While anatomical and morphological adaptations of roots are extensively studied, the root system architecture is only now becoming a focus of flooding research. Adventitious root (AR) formation shifts the root system higher up the plant, thereby facilitating supply with oxygen, and thus improving root and plant survival. We used Arabidopsis knockout mutants and overexpressors of ERFVII transcription factors to study their role in AR formation under hypoxic conditions and in response to ethylene. Results show that ethylene inhibits AR formation. Hypoxia mainly promotes AR elongation rather than formation mediated by ERFVII transcription factors, as indicated by reduced AR elongation in erfVII seedlings. Overexpression of HRE2 induces AR elongation to the same degree as hypoxia, while ethylene overrides HRE2‐induced AR elongation. The ERFVII transcription factors promote establishment of an AR system that is under negative control by ethylene. Inhibition of growth of the main root system and promotion of AR elongation under hypoxia strengthens the root system in upper soil layers where oxygen shortage may last for shorter time periods.