Cargando…

A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol

For the first time, structurally defined manganese pincer complexes catalyze the dehydrogenation of aqueous methanol to hydrogen and carbon dioxide, which is a transformation of interest with regard to the implementation of a hydrogen and methanol economy. Excellent long‐term stability was demonstra...

Descripción completa

Detalles Bibliográficos
Autores principales: Andérez‐Fernández, María, Vogt, Lydia K., Fischer, Steffen, Zhou, Wei, Jiao, Haijun, Garbe, Marcel, Elangovan, Saravanakumar, Junge, Kathrin, Junge, Henrik, Ludwig, Ralf, Beller, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586016/
https://www.ncbi.nlm.nih.gov/pubmed/27910197
http://dx.doi.org/10.1002/anie.201610182
Descripción
Sumario:For the first time, structurally defined manganese pincer complexes catalyze the dehydrogenation of aqueous methanol to hydrogen and carbon dioxide, which is a transformation of interest with regard to the implementation of a hydrogen and methanol economy. Excellent long‐term stability was demonstrated for the Mn‐PNPiPr catalyst, as a turnover of more than 20 000 was reached. In addition to methanol, other important hydrogen carriers were also successfully dehydrogenated.