Cargando…
Fractional-order quantum particle swarm optimization
Motivated by the concepts of quantum mechanics and particle swarm optimization (PSO), quantum-behaved particle swarm optimization (QPSO) was developed to achieve better global search ability. This paper proposes a new method to improve the global search ability of QPSO with fractional calculus (FC)....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586292/ https://www.ncbi.nlm.nih.gov/pubmed/31220152 http://dx.doi.org/10.1371/journal.pone.0218285 |
Sumario: | Motivated by the concepts of quantum mechanics and particle swarm optimization (PSO), quantum-behaved particle swarm optimization (QPSO) was developed to achieve better global search ability. This paper proposes a new method to improve the global search ability of QPSO with fractional calculus (FC). Based on one of the most frequently used fractional differential definitions, the Grünwald-Letnikov definition, we introduce its discrete expression into the position updating of QPSO. Extensive experiments on well-known benchmark functions were performed to evaluate the performance of the proposed fractional-order quantum particle swarm optimization (FQPSO). The experimental results demonstrate its superior ability in achieving optimal solutions for several different optimizations. |
---|