Cargando…
How single neuron properties shape chaotic dynamics and signal transmission in random neural networks
While most models of randomly connected neural networks assume single-neuron models with simple dynamics, neurons in the brain exhibit complex intrinsic dynamics over multiple timescales. We analyze how the dynamical properties of single neurons and recurrent connections interact to shape the effect...
Autores principales: | Muscinelli, Samuel P., Gerstner, Wulfram, Schwalger, Tilo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586367/ https://www.ncbi.nlm.nih.gov/pubmed/31181063 http://dx.doi.org/10.1371/journal.pcbi.1007122 |
Ejemplares similares
-
Bridging spiking neuron models and mesoscopic population models - a general theory for neural population dynamics
por: Schwalger, Tilo, et al.
Publicado: (2015) -
Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size
por: Schwalger, Tilo, et al.
Publicado: (2017) -
Mesoscopic population equations for spiking neural networks with synaptic short-term plasticity
por: Schmutz, Valentin, et al.
Publicado: (2020) -
A hierarchy of time scales supports unsupervised learning of behavioral sequences
por: Muscinelli, Samuel P, et al.
Publicado: (2015) -
Optimal Stimulation Protocol in a Bistable Synaptic Consolidation Model
por: Gastaldi, Chiara, et al.
Publicado: (2019)