Cargando…
Adopting machine learning to automatically identify candidate patients for corneal refractive surgery
Recently, it has become more important to screen candidates that undergo corneal refractive surgery to prevent complications. Until now, there is still no definitive screening method to confront the possibility of a misdiagnosis. We evaluate the possibilities of machine learning as a clinical decisi...
Autores principales: | Yoo, Tae Keun, Ryu, Ik Hee, Lee, Geunyoung, Kim, Youngnam, Kim, Jin Kuk, Lee, In Sik, Kim, Jung Sub, Rim, Tyler Hyungtaek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586803/ https://www.ncbi.nlm.nih.gov/pubmed/31304405 http://dx.doi.org/10.1038/s41746-019-0135-8 |
Ejemplares similares
-
Explainable Machine Learning Approach as a Tool to Understand Factors Used to Select the Refractive Surgery Technique on the Expert Level
por: Yoo, Tae Keun, et al.
Publicado: (2020) -
Development of a Web-Based Ensemble Machine Learning Application to Select the Optimal Size of Posterior Chamber Phakic Intraocular Lens
por: Kang, Eun Min, et al.
Publicado: (2021) -
Deep learning-based smart speaker to confirm surgical sites for cataract surgeries: A pilot study
por: Yoo, Tae Keun, et al.
Publicado: (2020) -
Corneal epithelial and stromal thickness changes in myopic orthokeratology and their relationship with refractive change
por: Kim, Wook Kyum, et al.
Publicado: (2018) -
Refractive Errors in Koreans: The Korea National Health and Nutrition Examination Survey 2008-2012
por: Rim, Tyler Hyungtaek, et al.
Publicado: (2016)