Cargando…

Structure-preserving visualisation of high dimensional single-cell datasets

Single-cell technologies offer an unprecedented opportunity to effectively characterize cellular heterogeneity in health and disease. Nevertheless, visualisation and interpretation of these multi-dimensional datasets remains a challenge. We present a novel framework, ivis, for dimensionality reducti...

Descripción completa

Detalles Bibliográficos
Autores principales: Szubert, Benjamin, Cole, Jennifer E., Monaco, Claudia, Drozdov, Ignat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586841/
https://www.ncbi.nlm.nih.gov/pubmed/31222035
http://dx.doi.org/10.1038/s41598-019-45301-0
Descripción
Sumario:Single-cell technologies offer an unprecedented opportunity to effectively characterize cellular heterogeneity in health and disease. Nevertheless, visualisation and interpretation of these multi-dimensional datasets remains a challenge. We present a novel framework, ivis, for dimensionality reduction of single-cell expression data. ivis utilizes a siamese neural network architecture that is trained using a novel triplet loss function. Results on simulated and real datasets demonstrate that ivis preserves global data structures in a low-dimensional space, adds new data points to existing embeddings using a parametric mapping function, and scales linearly to hundreds of thousands of cells. ivis is made publicly available through Python and R interfaces on https://github.com/beringresearch/ivis.