Cargando…

ATP binds and inhibits the neurodegeneration-associated fibrillization of the FUS RRM domain

Adenosine triphosphate (ATP) provides energy for cellular processes but has recently been found to act also as a hydrotrope to maintain protein homeostasis. ATP bivalently binds the disordered domain of FUS containing the RG/RGG sequence motif and thereby affects FUS liquid-liquid phase separation....

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Jian, Lim, Liangzhong, Song, Jianxing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586847/
https://www.ncbi.nlm.nih.gov/pubmed/31240261
http://dx.doi.org/10.1038/s42003-019-0463-x
Descripción
Sumario:Adenosine triphosphate (ATP) provides energy for cellular processes but has recently been found to act also as a hydrotrope to maintain protein homeostasis. ATP bivalently binds the disordered domain of FUS containing the RG/RGG sequence motif and thereby affects FUS liquid-liquid phase separation. Here, using NMR spectroscopy and molecular docking studies, we report that ATP specifically binds also to the well-folded RRM domain of FUS at physiologically relevant concentrations and with the binding interface overlapping with that of its physiological ssDNA ligand. Importantly, although ATP has little effect on the thermodynamic stability of the RRM domain or its binding to ssDNA, ATP kinetically inhibits the RRM fibrillization that is critical for the gain of cytotoxicity associated with ALS and FTD. Our study provides a previously unappreciated mechanism for ATP to inhibit fibrillization by specific binding, and suggests that ATP may bind additional proteins other than the classic ATP-dependent enzymes.