Cargando…

Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model

Decoders optimized offline to reconstruct intended movements from neural recordings sometimes fail to achieve optimal performance online when they are used in closed-loop as part of an intracortical brain-computer interface (iBCI). This is because typical decoder calibration routines do not model th...

Descripción completa

Detalles Bibliográficos
Autores principales: Willett, Francis R., Young, Daniel R., Murphy, Brian A., Memberg, William D., Blabe, Christine H., Pandarinath, Chethan, Stavisky, Sergey D., Rezaii, Paymon, Saab, Jad, Walter, Benjamin L., Sweet, Jennifer A., Miller, Jonathan P., Henderson, Jaimie M., Shenoy, Krishna V., Simeral, John D., Jarosiewicz, Beata, Hochberg, Leigh R., Kirsch, Robert F., Bolu Ajiboye, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586941/
https://www.ncbi.nlm.nih.gov/pubmed/31222030
http://dx.doi.org/10.1038/s41598-019-44166-7
_version_ 1783428977518444544
author Willett, Francis R.
Young, Daniel R.
Murphy, Brian A.
Memberg, William D.
Blabe, Christine H.
Pandarinath, Chethan
Stavisky, Sergey D.
Rezaii, Paymon
Saab, Jad
Walter, Benjamin L.
Sweet, Jennifer A.
Miller, Jonathan P.
Henderson, Jaimie M.
Shenoy, Krishna V.
Simeral, John D.
Jarosiewicz, Beata
Hochberg, Leigh R.
Kirsch, Robert F.
Bolu Ajiboye, A.
author_facet Willett, Francis R.
Young, Daniel R.
Murphy, Brian A.
Memberg, William D.
Blabe, Christine H.
Pandarinath, Chethan
Stavisky, Sergey D.
Rezaii, Paymon
Saab, Jad
Walter, Benjamin L.
Sweet, Jennifer A.
Miller, Jonathan P.
Henderson, Jaimie M.
Shenoy, Krishna V.
Simeral, John D.
Jarosiewicz, Beata
Hochberg, Leigh R.
Kirsch, Robert F.
Bolu Ajiboye, A.
author_sort Willett, Francis R.
collection PubMed
description Decoders optimized offline to reconstruct intended movements from neural recordings sometimes fail to achieve optimal performance online when they are used in closed-loop as part of an intracortical brain-computer interface (iBCI). This is because typical decoder calibration routines do not model the emergent interactions between the decoder, the user, and the task parameters (e.g. target size). Here, we investigated the feasibility of simulating online performance to better guide decoder parameter selection and design. Three participants in the BrainGate2 pilot clinical trial controlled a computer cursor using a linear velocity decoder under different gain (speed scaling) and temporal smoothing parameters and acquired targets with different radii and distances. We show that a user-specific iBCI feedback control model can predict how performance changes under these different decoder and task parameters in held-out data. We also used the model to optimize a nonlinear speed scaling function for the decoder. When used online with two participants, it increased the dynamic range of decoded speeds and decreased the time taken to acquire targets (compared to an optimized standard decoder). These results suggest that it is feasible to simulate iBCI performance accurately enough to be useful for quantitative decoder optimization and design.
format Online
Article
Text
id pubmed-6586941
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-65869412019-06-27 Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model Willett, Francis R. Young, Daniel R. Murphy, Brian A. Memberg, William D. Blabe, Christine H. Pandarinath, Chethan Stavisky, Sergey D. Rezaii, Paymon Saab, Jad Walter, Benjamin L. Sweet, Jennifer A. Miller, Jonathan P. Henderson, Jaimie M. Shenoy, Krishna V. Simeral, John D. Jarosiewicz, Beata Hochberg, Leigh R. Kirsch, Robert F. Bolu Ajiboye, A. Sci Rep Article Decoders optimized offline to reconstruct intended movements from neural recordings sometimes fail to achieve optimal performance online when they are used in closed-loop as part of an intracortical brain-computer interface (iBCI). This is because typical decoder calibration routines do not model the emergent interactions between the decoder, the user, and the task parameters (e.g. target size). Here, we investigated the feasibility of simulating online performance to better guide decoder parameter selection and design. Three participants in the BrainGate2 pilot clinical trial controlled a computer cursor using a linear velocity decoder under different gain (speed scaling) and temporal smoothing parameters and acquired targets with different radii and distances. We show that a user-specific iBCI feedback control model can predict how performance changes under these different decoder and task parameters in held-out data. We also used the model to optimize a nonlinear speed scaling function for the decoder. When used online with two participants, it increased the dynamic range of decoded speeds and decreased the time taken to acquire targets (compared to an optimized standard decoder). These results suggest that it is feasible to simulate iBCI performance accurately enough to be useful for quantitative decoder optimization and design. Nature Publishing Group UK 2019-06-20 /pmc/articles/PMC6586941/ /pubmed/31222030 http://dx.doi.org/10.1038/s41598-019-44166-7 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Willett, Francis R.
Young, Daniel R.
Murphy, Brian A.
Memberg, William D.
Blabe, Christine H.
Pandarinath, Chethan
Stavisky, Sergey D.
Rezaii, Paymon
Saab, Jad
Walter, Benjamin L.
Sweet, Jennifer A.
Miller, Jonathan P.
Henderson, Jaimie M.
Shenoy, Krishna V.
Simeral, John D.
Jarosiewicz, Beata
Hochberg, Leigh R.
Kirsch, Robert F.
Bolu Ajiboye, A.
Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model
title Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model
title_full Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model
title_fullStr Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model
title_full_unstemmed Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model
title_short Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model
title_sort principled bci decoder design and parameter selection using a feedback control model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586941/
https://www.ncbi.nlm.nih.gov/pubmed/31222030
http://dx.doi.org/10.1038/s41598-019-44166-7
work_keys_str_mv AT willettfrancisr principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel
AT youngdanielr principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel
AT murphybriana principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel
AT membergwilliamd principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel
AT blabechristineh principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel
AT pandarinathchethan principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel
AT staviskysergeyd principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel
AT rezaiipaymon principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel
AT saabjad principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel
AT walterbenjaminl principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel
AT sweetjennifera principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel
AT millerjonathanp principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel
AT hendersonjaimiem principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel
AT shenoykrishnav principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel
AT simeraljohnd principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel
AT jarosiewiczbeata principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel
AT hochbergleighr principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel
AT kirschrobertf principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel
AT boluajiboyea principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel