Cargando…
Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model
Decoders optimized offline to reconstruct intended movements from neural recordings sometimes fail to achieve optimal performance online when they are used in closed-loop as part of an intracortical brain-computer interface (iBCI). This is because typical decoder calibration routines do not model th...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586941/ https://www.ncbi.nlm.nih.gov/pubmed/31222030 http://dx.doi.org/10.1038/s41598-019-44166-7 |
_version_ | 1783428977518444544 |
---|---|
author | Willett, Francis R. Young, Daniel R. Murphy, Brian A. Memberg, William D. Blabe, Christine H. Pandarinath, Chethan Stavisky, Sergey D. Rezaii, Paymon Saab, Jad Walter, Benjamin L. Sweet, Jennifer A. Miller, Jonathan P. Henderson, Jaimie M. Shenoy, Krishna V. Simeral, John D. Jarosiewicz, Beata Hochberg, Leigh R. Kirsch, Robert F. Bolu Ajiboye, A. |
author_facet | Willett, Francis R. Young, Daniel R. Murphy, Brian A. Memberg, William D. Blabe, Christine H. Pandarinath, Chethan Stavisky, Sergey D. Rezaii, Paymon Saab, Jad Walter, Benjamin L. Sweet, Jennifer A. Miller, Jonathan P. Henderson, Jaimie M. Shenoy, Krishna V. Simeral, John D. Jarosiewicz, Beata Hochberg, Leigh R. Kirsch, Robert F. Bolu Ajiboye, A. |
author_sort | Willett, Francis R. |
collection | PubMed |
description | Decoders optimized offline to reconstruct intended movements from neural recordings sometimes fail to achieve optimal performance online when they are used in closed-loop as part of an intracortical brain-computer interface (iBCI). This is because typical decoder calibration routines do not model the emergent interactions between the decoder, the user, and the task parameters (e.g. target size). Here, we investigated the feasibility of simulating online performance to better guide decoder parameter selection and design. Three participants in the BrainGate2 pilot clinical trial controlled a computer cursor using a linear velocity decoder under different gain (speed scaling) and temporal smoothing parameters and acquired targets with different radii and distances. We show that a user-specific iBCI feedback control model can predict how performance changes under these different decoder and task parameters in held-out data. We also used the model to optimize a nonlinear speed scaling function for the decoder. When used online with two participants, it increased the dynamic range of decoded speeds and decreased the time taken to acquire targets (compared to an optimized standard decoder). These results suggest that it is feasible to simulate iBCI performance accurately enough to be useful for quantitative decoder optimization and design. |
format | Online Article Text |
id | pubmed-6586941 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-65869412019-06-27 Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model Willett, Francis R. Young, Daniel R. Murphy, Brian A. Memberg, William D. Blabe, Christine H. Pandarinath, Chethan Stavisky, Sergey D. Rezaii, Paymon Saab, Jad Walter, Benjamin L. Sweet, Jennifer A. Miller, Jonathan P. Henderson, Jaimie M. Shenoy, Krishna V. Simeral, John D. Jarosiewicz, Beata Hochberg, Leigh R. Kirsch, Robert F. Bolu Ajiboye, A. Sci Rep Article Decoders optimized offline to reconstruct intended movements from neural recordings sometimes fail to achieve optimal performance online when they are used in closed-loop as part of an intracortical brain-computer interface (iBCI). This is because typical decoder calibration routines do not model the emergent interactions between the decoder, the user, and the task parameters (e.g. target size). Here, we investigated the feasibility of simulating online performance to better guide decoder parameter selection and design. Three participants in the BrainGate2 pilot clinical trial controlled a computer cursor using a linear velocity decoder under different gain (speed scaling) and temporal smoothing parameters and acquired targets with different radii and distances. We show that a user-specific iBCI feedback control model can predict how performance changes under these different decoder and task parameters in held-out data. We also used the model to optimize a nonlinear speed scaling function for the decoder. When used online with two participants, it increased the dynamic range of decoded speeds and decreased the time taken to acquire targets (compared to an optimized standard decoder). These results suggest that it is feasible to simulate iBCI performance accurately enough to be useful for quantitative decoder optimization and design. Nature Publishing Group UK 2019-06-20 /pmc/articles/PMC6586941/ /pubmed/31222030 http://dx.doi.org/10.1038/s41598-019-44166-7 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Willett, Francis R. Young, Daniel R. Murphy, Brian A. Memberg, William D. Blabe, Christine H. Pandarinath, Chethan Stavisky, Sergey D. Rezaii, Paymon Saab, Jad Walter, Benjamin L. Sweet, Jennifer A. Miller, Jonathan P. Henderson, Jaimie M. Shenoy, Krishna V. Simeral, John D. Jarosiewicz, Beata Hochberg, Leigh R. Kirsch, Robert F. Bolu Ajiboye, A. Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model |
title | Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model |
title_full | Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model |
title_fullStr | Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model |
title_full_unstemmed | Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model |
title_short | Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model |
title_sort | principled bci decoder design and parameter selection using a feedback control model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586941/ https://www.ncbi.nlm.nih.gov/pubmed/31222030 http://dx.doi.org/10.1038/s41598-019-44166-7 |
work_keys_str_mv | AT willettfrancisr principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel AT youngdanielr principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel AT murphybriana principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel AT membergwilliamd principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel AT blabechristineh principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel AT pandarinathchethan principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel AT staviskysergeyd principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel AT rezaiipaymon principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel AT saabjad principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel AT walterbenjaminl principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel AT sweetjennifera principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel AT millerjonathanp principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel AT hendersonjaimiem principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel AT shenoykrishnav principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel AT simeraljohnd principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel AT jarosiewiczbeata principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel AT hochbergleighr principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel AT kirschrobertf principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel AT boluajiboyea principledbcidecoderdesignandparameterselectionusingafeedbackcontrolmodel |