Cargando…
Mining the deep Red-Sea brine pool microbial community for anticancer therapeutics
BACKGROUND: Microbial species in the brine pools of the Red Sea and the brine pool-seawater interfaces are exposed to high temperature, high salinity, low oxygen levels and high concentrations of heavy metals. As adaptations to these harsh conditions require a large suite of secondary metabolites, t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6587256/ https://www.ncbi.nlm.nih.gov/pubmed/31221160 http://dx.doi.org/10.1186/s12906-019-2554-0 |
Sumario: | BACKGROUND: Microbial species in the brine pools of the Red Sea and the brine pool-seawater interfaces are exposed to high temperature, high salinity, low oxygen levels and high concentrations of heavy metals. As adaptations to these harsh conditions require a large suite of secondary metabolites, these microbes have a huge potential as a source of novel anticancer molecules. METHODS: A total of 60 ethyl-acetate extracts of newly isolated strains from extreme environments of the Red-Sea were isolated and tested against several human cancer cell lines for potential cytotoxic and apoptotic activities. RESULTS: Isolates from the Erba brine-pool accounted for 50% of active bacterial extracts capable of inducing 30% or greater inhibition of cell growth. Among the 60 extracts screened, seven showed selectivity towards triple negative BT20 cells compared to normal fibroblasts. CONCLUSION: In this study, we identified several extracts able to induce caspase-dependent apoptosis in various cancer cell lines. Further investigations and isolation of the active compounds of these Red Sea brine pool microbes may offer a chemotherapeutic potential for cancers with limited treatment options. |
---|