Cargando…

Calculating the individualized fraction regime in stereotactic body radiotherapy for non-small cell lung cancer based on uncomplicated tumor control probability function

BACKGROUND: To calculate the individualized fraction regime (IFR) in stereotactic body radiotherapy (SBRT) for non-small cell lung cancer (NSCLC) patients using the uncomplicated tumor control probability (UTCP, P(+)) function. METHODS: Thirty-three patients with peripheral lung cancer or lung metas...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Jia-Yang, Lin, Pei-Xian, Huang, Bao-Tian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6587287/
https://www.ncbi.nlm.nih.gov/pubmed/31221159
http://dx.doi.org/10.1186/s13014-019-1318-9
Descripción
Sumario:BACKGROUND: To calculate the individualized fraction regime (IFR) in stereotactic body radiotherapy (SBRT) for non-small cell lung cancer (NSCLC) patients using the uncomplicated tumor control probability (UTCP, P(+)) function. METHODS: Thirty-three patients with peripheral lung cancer or lung metastases who had undergone SBRT were analyzed. Treatment planning was performed using the dose regime of 48 Gy in 4 fractions. Dose volume histogram (DVH) data for the gross tumor volume (GTV), lung, chest wall (CW) and rib were exported and the dose bin was multiplied by a certain percentage of the dose in that bin which ranged from 1 to 200% in steps of 1%. For each dose fraction, P(+) values were calculated by considering the tumor control probability (TCP), radiation-induced pneumonitis (RIP), chest wall pain (CWP) and radiation-induced rib fracture (RIRF). UTCP values as a function of physical dose were plotted and the maximum P(+) values corresponded to the optimal therapeutic gain. The IFR in 3 fractions was also calculated with the same method by converting the dose using the linear quadratic (LQ) model. RESULTS: Thirty-three patients attained an IFR using the introduced methods. All the patients achieved a TCP value higher than 92.0%. The IFR ranged from 3 × 10.8 Gy to 3 × 12.5 Gy for 3 fraction regimes and from 4 × 9.2 Gy to 4 × 10.7 Gy for 4 fraction regimes. Four patients with typical tumor characteristics demonstrated that the IFR was patient-specific and could maximize the therapeutic gain. Patients with a large tumor had a lower TCP and UTCP and a smaller fractional dose than patients with a small tumor. Patients with a tumor adjacent to the organ at risk (OAR) or at a high risk of RIP had a lower UTCP and a smaller fractional dose compared with patients with a tumor located distant from the OAR. CONCLUSIONS: The proposed method is capable of predicting the IFR for NSCLC patients undergoing SBRT. Further validation in clinical samples is required.