Cargando…
Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy
Increasing evidence has implicated the important role of mitochondrial pathology in diabetic cardiomyopathy (DCM), while the underlying mechanism remains largely unclear. The aim of this study was to investigate the role of mitochondrial dynamics in the pathogenesis of DCM and its underlying mechani...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6587356/ https://www.ncbi.nlm.nih.gov/pubmed/31281507 http://dx.doi.org/10.7150/thno.33684 |
_version_ | 1783429051245920256 |
---|---|
author | Hu, Lang Ding, Mingge Tang, Daishi Gao, Erhe Li, Congye Wang, Kaiyan Qi, Bingchao Qiu, Jihuan Zhao, Huishou Chang, Pan Fu, Feng Li, Yan |
author_facet | Hu, Lang Ding, Mingge Tang, Daishi Gao, Erhe Li, Congye Wang, Kaiyan Qi, Bingchao Qiu, Jihuan Zhao, Huishou Chang, Pan Fu, Feng Li, Yan |
author_sort | Hu, Lang |
collection | PubMed |
description | Increasing evidence has implicated the important role of mitochondrial pathology in diabetic cardiomyopathy (DCM), while the underlying mechanism remains largely unclear. The aim of this study was to investigate the role of mitochondrial dynamics in the pathogenesis of DCM and its underlying mechanisms. Methods: Obese diabetic (db/db) and lean control (db/+) mice were used in this study. Mitochondrial dynamics were analyzed by transmission electron microscopy in vivo and by confocal microscopy in vitro. Results: Diabetic hearts from 12-week-old db/db mice showed excessive mitochondrial fission and significant reduced expression of Mfn2, while there was no significant alteration or slight change in the expression of other dynamic-related proteins. Reconstitution of Mfn2 in diabetic hearts inhibited mitochondrial fission and prevented the progression of DCM. In an in-vitro study, cardiomyocytes cultured in high-glucose and high-fat (HG/HF) medium showed excessive mitochondrial fission and decreased Mfn2 expression. Reconstitution of Mfn2 restored mitochondrial membrane potential, suppressed mitochondrial oxidative stress and improved mitochondrial function in HG/HF-treated cardiomyocytes through promoting mitochondrial fusion. In addition, the down-regulation of Mfn2 expression in HG/HF-treated cardiomyocytes was induced by reduced expression of PPARα, which positively regulated the expression of Mfn2 by directly binding to its promoter. Conclusion: Our study provides the first evidence that imbalanced mitochondrial dynamics induced by down-regulated Mfn2 contributes to the development of DCM. Targeting mitochondrial dynamics by regulating Mfn2 might be a potential therapeutic strategy for DCM. |
format | Online Article Text |
id | pubmed-6587356 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-65873562019-07-05 Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy Hu, Lang Ding, Mingge Tang, Daishi Gao, Erhe Li, Congye Wang, Kaiyan Qi, Bingchao Qiu, Jihuan Zhao, Huishou Chang, Pan Fu, Feng Li, Yan Theranostics Research Paper Increasing evidence has implicated the important role of mitochondrial pathology in diabetic cardiomyopathy (DCM), while the underlying mechanism remains largely unclear. The aim of this study was to investigate the role of mitochondrial dynamics in the pathogenesis of DCM and its underlying mechanisms. Methods: Obese diabetic (db/db) and lean control (db/+) mice were used in this study. Mitochondrial dynamics were analyzed by transmission electron microscopy in vivo and by confocal microscopy in vitro. Results: Diabetic hearts from 12-week-old db/db mice showed excessive mitochondrial fission and significant reduced expression of Mfn2, while there was no significant alteration or slight change in the expression of other dynamic-related proteins. Reconstitution of Mfn2 in diabetic hearts inhibited mitochondrial fission and prevented the progression of DCM. In an in-vitro study, cardiomyocytes cultured in high-glucose and high-fat (HG/HF) medium showed excessive mitochondrial fission and decreased Mfn2 expression. Reconstitution of Mfn2 restored mitochondrial membrane potential, suppressed mitochondrial oxidative stress and improved mitochondrial function in HG/HF-treated cardiomyocytes through promoting mitochondrial fusion. In addition, the down-regulation of Mfn2 expression in HG/HF-treated cardiomyocytes was induced by reduced expression of PPARα, which positively regulated the expression of Mfn2 by directly binding to its promoter. Conclusion: Our study provides the first evidence that imbalanced mitochondrial dynamics induced by down-regulated Mfn2 contributes to the development of DCM. Targeting mitochondrial dynamics by regulating Mfn2 might be a potential therapeutic strategy for DCM. Ivyspring International Publisher 2019-05-31 /pmc/articles/PMC6587356/ /pubmed/31281507 http://dx.doi.org/10.7150/thno.33684 Text en © Ivyspring International Publisher This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Hu, Lang Ding, Mingge Tang, Daishi Gao, Erhe Li, Congye Wang, Kaiyan Qi, Bingchao Qiu, Jihuan Zhao, Huishou Chang, Pan Fu, Feng Li, Yan Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy |
title | Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy |
title_full | Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy |
title_fullStr | Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy |
title_full_unstemmed | Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy |
title_short | Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy |
title_sort | targeting mitochondrial dynamics by regulating mfn2 for therapeutic intervention in diabetic cardiomyopathy |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6587356/ https://www.ncbi.nlm.nih.gov/pubmed/31281507 http://dx.doi.org/10.7150/thno.33684 |
work_keys_str_mv | AT hulang targetingmitochondrialdynamicsbyregulatingmfn2fortherapeuticinterventionindiabeticcardiomyopathy AT dingmingge targetingmitochondrialdynamicsbyregulatingmfn2fortherapeuticinterventionindiabeticcardiomyopathy AT tangdaishi targetingmitochondrialdynamicsbyregulatingmfn2fortherapeuticinterventionindiabeticcardiomyopathy AT gaoerhe targetingmitochondrialdynamicsbyregulatingmfn2fortherapeuticinterventionindiabeticcardiomyopathy AT licongye targetingmitochondrialdynamicsbyregulatingmfn2fortherapeuticinterventionindiabeticcardiomyopathy AT wangkaiyan targetingmitochondrialdynamicsbyregulatingmfn2fortherapeuticinterventionindiabeticcardiomyopathy AT qibingchao targetingmitochondrialdynamicsbyregulatingmfn2fortherapeuticinterventionindiabeticcardiomyopathy AT qiujihuan targetingmitochondrialdynamicsbyregulatingmfn2fortherapeuticinterventionindiabeticcardiomyopathy AT zhaohuishou targetingmitochondrialdynamicsbyregulatingmfn2fortherapeuticinterventionindiabeticcardiomyopathy AT changpan targetingmitochondrialdynamicsbyregulatingmfn2fortherapeuticinterventionindiabeticcardiomyopathy AT fufeng targetingmitochondrialdynamicsbyregulatingmfn2fortherapeuticinterventionindiabeticcardiomyopathy AT liyan targetingmitochondrialdynamicsbyregulatingmfn2fortherapeuticinterventionindiabeticcardiomyopathy |