Cargando…
Characterizing and Predicting Autism Spectrum Disorder by Performing Resting-State Functional Network Community Pattern Analysis
Growing evidence indicates that autism spectrum disorder (ASD) is a neuropsychological disconnection syndrome that can be analyzed using various complex network metrics used as pathology biomarkers. Recently, community detection and analysis rooted in the complex network and graph theories have been...
Autores principales: | Song, Yuqing, Epalle, Thomas Martial, Lu, Hu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6587437/ https://www.ncbi.nlm.nih.gov/pubmed/31258470 http://dx.doi.org/10.3389/fnhum.2019.00203 |
Ejemplares similares
-
Resting-State Brain Network Dysfunctions Associated With Visuomotor Impairments in Autism Spectrum Disorder
por: Wang, Zheng, et al.
Publicado: (2019) -
Alteration of resting-state network dynamics in autism spectrum disorder based on leading eigenvector dynamics analysis
por: Wang, Chaoyan, et al.
Publicado: (2023) -
Sex Differences in Resting-State Functional Connectivity of the Cerebellum in Autism Spectrum Disorder
por: Smith, Rachel E. W., et al.
Publicado: (2019) -
EEG Microstates Analysis in Young Adults With Autism Spectrum Disorder During Resting-State
por: D’Croz-Baron, David F., et al.
Publicado: (2019) -
Imbalance of Functional Connectivity and Temporal Entropy in Resting-State Networks in Autism Spectrum Disorder: A Machine Learning Approach
por: Smith, Robert X., et al.
Publicado: (2018)