Cargando…
A Survey of Multi‐task Learning Methods in Chemoinformatics
Despite the increasing volume of available data, the proportion of experimentally measured data remains small compared to the virtual chemical space of possible chemical structures. Therefore, there is a strong interest in simultaneously predicting different ADMET and biological properties of molecu...
Autores principales: | Sosnin, Sergey, Vashurina, Mariia, Withnall, Michael, Karpov, Pavel, Fedorov, Maxim, Tetko, Igor V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6587441/ https://www.ncbi.nlm.nih.gov/pubmed/30499195 http://dx.doi.org/10.1002/minf.201800108 |
Ejemplares similares
-
Chemical space exploration guided by deep neural networks
por: Karlov, Dmitry S., et al.
Publicado: (2019) -
From Big Data to Artificial Intelligence: chemoinformatics meets new challenges
por: Tetko, Igor V., et al.
Publicado: (2020) -
Machine learning methods in chemoinformatics
por: Mitchell, John B O
Publicado: (2014) -
Matched Molecular Pair Analysis on Large Melting Point Datasets: A Big Data Perspective
por: Withnall, Michael, et al.
Publicado: (2017) -
Artificial neural networks and machine learning - ICANN 2019: 28th international conference on artificial neural networks, Munich, Germany, September 17-19, 2019, proceedings
por: Tetko, Igor V, et al.
Publicado: (2019)