Cargando…
Semi‐parametric analysis of overdispersed count and metric data with varying follow‐up times: Asymptotic theory and small sample approximations
Count data are common endpoints in clinical trials, for example magnetic resonance imaging lesion counts in multiple sclerosis. They often exhibit high levels of overdispersion, that is variances are larger than the means. Inference is regularly based on negative binomial regression along with maxim...
Autores principales: | Konietschke, Frank, Friede, Tim, Pauly, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6587510/ https://www.ncbi.nlm.nih.gov/pubmed/30515878 http://dx.doi.org/10.1002/bimj.201800027 |
Ejemplares similares
-
Ranking procedures for repeated measures designs with missing data: Estimation, testing and asymptotic
theory
por: Rubarth, Kerstin, et al.
Publicado: (2021) -
Asymptotic approximations
por: Jeffreys, Harold
Publicado: (1962) -
Robust heavy-traffic approximations for service systems facing overdispersed demand
por: Mathijsen, Britt W. J., et al.
Publicado: (2018) -
Asymptotic approximations of integrals
por: Wong, Roderick
Publicado: (1989) -
Negative Binomial Regression: Understanding and Modeling Overdispersed Count Data
por: Hilbe, Joseph M
Publicado: (2011)