Cargando…

Rational design of near‐infrared absorbing organic dyes: Controlling the HOMO–LUMO gap using quantitative molecular orbital theory

Principles are presented for the design of functional near‐infrared (NIR) organic dye molecules composed of simple donor (D), spacer (π), and acceptor (A) building blocks in a D‐π‐A fashion. Quantitative Kohn–Sham molecular orbital analysis enables accurate fine‐tuning of the electronic properties o...

Descripción completa

Detalles Bibliográficos
Autores principales: Narsaria, Ayush K., Poater, Jordi, Fonseca Guerra, Célia, Ehlers, Andreas W., Lammertsma, Koop, Bickelhaupt, F. Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6587560/
https://www.ncbi.nlm.nih.gov/pubmed/30515900
http://dx.doi.org/10.1002/jcc.25731
_version_ 1783429093509824512
author Narsaria, Ayush K.
Poater, Jordi
Fonseca Guerra, Célia
Ehlers, Andreas W.
Lammertsma, Koop
Bickelhaupt, F. Matthias
author_facet Narsaria, Ayush K.
Poater, Jordi
Fonseca Guerra, Célia
Ehlers, Andreas W.
Lammertsma, Koop
Bickelhaupt, F. Matthias
author_sort Narsaria, Ayush K.
collection PubMed
description Principles are presented for the design of functional near‐infrared (NIR) organic dye molecules composed of simple donor (D), spacer (π), and acceptor (A) building blocks in a D‐π‐A fashion. Quantitative Kohn–Sham molecular orbital analysis enables accurate fine‐tuning of the electronic properties of the π‐conjugated aromatic cores by effecting their size, including silaaromatics, adding donor and acceptor substituents, and manipulating the D‐π‐A torsional angle. The trends in HOMO–LUMO gaps of the model dyes correlate with the excitation energies computed with time‐dependent density functional theory at CAMY‐B3LYP. Design principles could be developed from these analyses, which led to a proof‐of‐concept linear D‐π‐A with a strong excited‐state intramolecular charge transfer and a NIR absorption at 879 nm. © 2018 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.
format Online
Article
Text
id pubmed-6587560
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-65875602019-07-02 Rational design of near‐infrared absorbing organic dyes: Controlling the HOMO–LUMO gap using quantitative molecular orbital theory Narsaria, Ayush K. Poater, Jordi Fonseca Guerra, Célia Ehlers, Andreas W. Lammertsma, Koop Bickelhaupt, F. Matthias J Comput Chem Full Papers Principles are presented for the design of functional near‐infrared (NIR) organic dye molecules composed of simple donor (D), spacer (π), and acceptor (A) building blocks in a D‐π‐A fashion. Quantitative Kohn–Sham molecular orbital analysis enables accurate fine‐tuning of the electronic properties of the π‐conjugated aromatic cores by effecting their size, including silaaromatics, adding donor and acceptor substituents, and manipulating the D‐π‐A torsional angle. The trends in HOMO–LUMO gaps of the model dyes correlate with the excitation energies computed with time‐dependent density functional theory at CAMY‐B3LYP. Design principles could be developed from these analyses, which led to a proof‐of‐concept linear D‐π‐A with a strong excited‐state intramolecular charge transfer and a NIR absorption at 879 nm. © 2018 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc. John Wiley & Sons, Inc. 2018-12-04 2018-12-15 /pmc/articles/PMC6587560/ /pubmed/30515900 http://dx.doi.org/10.1002/jcc.25731 Text en © 2018 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Narsaria, Ayush K.
Poater, Jordi
Fonseca Guerra, Célia
Ehlers, Andreas W.
Lammertsma, Koop
Bickelhaupt, F. Matthias
Rational design of near‐infrared absorbing organic dyes: Controlling the HOMO–LUMO gap using quantitative molecular orbital theory
title Rational design of near‐infrared absorbing organic dyes: Controlling the HOMO–LUMO gap using quantitative molecular orbital theory
title_full Rational design of near‐infrared absorbing organic dyes: Controlling the HOMO–LUMO gap using quantitative molecular orbital theory
title_fullStr Rational design of near‐infrared absorbing organic dyes: Controlling the HOMO–LUMO gap using quantitative molecular orbital theory
title_full_unstemmed Rational design of near‐infrared absorbing organic dyes: Controlling the HOMO–LUMO gap using quantitative molecular orbital theory
title_short Rational design of near‐infrared absorbing organic dyes: Controlling the HOMO–LUMO gap using quantitative molecular orbital theory
title_sort rational design of near‐infrared absorbing organic dyes: controlling the homo–lumo gap using quantitative molecular orbital theory
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6587560/
https://www.ncbi.nlm.nih.gov/pubmed/30515900
http://dx.doi.org/10.1002/jcc.25731
work_keys_str_mv AT narsariaayushk rationaldesignofnearinfraredabsorbingorganicdyescontrollingthehomolumogapusingquantitativemolecularorbitaltheory
AT poaterjordi rationaldesignofnearinfraredabsorbingorganicdyescontrollingthehomolumogapusingquantitativemolecularorbitaltheory
AT fonsecaguerracelia rationaldesignofnearinfraredabsorbingorganicdyescontrollingthehomolumogapusingquantitativemolecularorbitaltheory
AT ehlersandreasw rationaldesignofnearinfraredabsorbingorganicdyescontrollingthehomolumogapusingquantitativemolecularorbitaltheory
AT lammertsmakoop rationaldesignofnearinfraredabsorbingorganicdyescontrollingthehomolumogapusingquantitativemolecularorbitaltheory
AT bickelhauptfmatthias rationaldesignofnearinfraredabsorbingorganicdyescontrollingthehomolumogapusingquantitativemolecularorbitaltheory