Cargando…
Investigating hospital heterogeneity with a competing risks frailty model
Survival analysis is used in the medical field to identify the effect of predictive variables on time to a specific event. Generally, not all variation of survival time can be explained by observed covariates. The effect of unobserved variables on the risk of a patient is called frailty. In multicen...
Autores principales: | Rueten‐Budde, Anja J., Putter, Hein, Fiocco, Marta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6587741/ https://www.ncbi.nlm.nih.gov/pubmed/30338563 http://dx.doi.org/10.1002/sim.8002 |
Ejemplares similares
-
Statistical models versus machine learning for competing risks: development and validation of prognostic models
por: Kantidakis, Georgios, et al.
Publicado: (2023) -
External validation and adaptation of a dynamic prediction model for patients with high‐grade extremity soft tissue sarcoma
por: Rueten‐Budde, Anja J., et al.
Publicado: (2020) -
Dynamic prediction of overall survival: a retrospective analysis on 979 patients with Ewing sarcoma from the German registry
por: Liu, Chuchu, et al.
Publicado: (2020) -
A tutorial on frailty models
por: Balan, Theodor A, et al.
Publicado: (2020) -
Individual frailty excess hazard models in cancer epidemiology
por: Rubio, Francisco J., et al.
Publicado: (2023)