Cargando…
iSEE: Interface structure, evolution, and energy‐based machine learning predictor of binding affinity changes upon mutations
Quantitative evaluation of binding affinity changes upon mutations is crucial for protein engineering and drug design. Machine learning‐based methods are gaining increasing momentum in this field. Due to the limited number of experimental data, using a small number of sensitive predictive features i...
Autores principales: | Geng, Cunliang, Vangone, Anna, Folkers, Gert E., Xue, Li C., Bonvin, Alexandre M. J. J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6587874/ https://www.ncbi.nlm.nih.gov/pubmed/30417935 http://dx.doi.org/10.1002/prot.25630 |
Ejemplares similares
-
Contacts-based prediction of binding affinity in protein–protein complexes
por: Vangone, Anna, et al.
Publicado: (2015) -
Performance of HADDOCK and a simple contact-based protein–ligand binding affinity predictor in the D3R Grand Challenge 2
por: Kurkcuoglu, Zeynep, et al.
Publicado: (2017) -
Distinguishing crystallographic from biological interfaces in protein complexes: role of intermolecular contacts and energetics for classification
por: Elez, Katarina, et al.
Publicado: (2018) -
iSEE: Interactive SummarizedExperiment Explorer
por: Rue-Albrecht, Kevin, et al.
Publicado: (2018) -
PRODIGY-crystal: a web-tool for classification of biological interfaces in protein complexes
por: Jiménez-García, Brian, et al.
Publicado: (2019)