Cargando…
Ligand-Mediated Band Engineering in Bottom-Up Assembled SnTe Nanocomposites for Thermoelectric Energy Conversion
[Image: see text] The bottom-up assembly of colloidal nanocrystals is a versatile methodology to produce composite nanomaterials with precisely tuned electronic properties. Beyond the synthetic control over crystal domain size, shape, crystal phase, and composition, solution-processed nanocrystals a...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588270/ https://www.ncbi.nlm.nih.gov/pubmed/31017419 http://dx.doi.org/10.1021/jacs.9b01394 |
_version_ | 1783429222697533440 |
---|---|
author | Ibáñez, Maria Hasler, Roger Genç, Aziz Liu, Yu Kuster, Beatrice Schuster, Maximilian Dobrozhan, Oleksandr Cadavid, Doris Arbiol, Jordi Cabot, Andreu Kovalenko, Maksym V. |
author_facet | Ibáñez, Maria Hasler, Roger Genç, Aziz Liu, Yu Kuster, Beatrice Schuster, Maximilian Dobrozhan, Oleksandr Cadavid, Doris Arbiol, Jordi Cabot, Andreu Kovalenko, Maksym V. |
author_sort | Ibáñez, Maria |
collection | PubMed |
description | [Image: see text] The bottom-up assembly of colloidal nanocrystals is a versatile methodology to produce composite nanomaterials with precisely tuned electronic properties. Beyond the synthetic control over crystal domain size, shape, crystal phase, and composition, solution-processed nanocrystals allow exquisite surface engineering. This provides additional means to modulate the nanomaterial characteristics and particularly its electronic transport properties. For instance, inorganic surface ligands can be used to tune the type and concentration of majority carriers or to modify the electronic band structure. Herein, we report the thermoelectric properties of SnTe nanocomposites obtained from the consolidation of surface-engineered SnTe nanocrystals into macroscopic pellets. A CdSe-based ligand is selected to (i) converge the light and heavy bands through partial Cd alloying and (ii) generate CdSe nanoinclusions as a secondary phase within the SnTe matrix, thereby reducing the thermal conductivity. These SnTe-CdSe nanocomposites possess thermoelectric figures of merit of up to 1.3 at 850 K, which is, to the best of our knowledge, the highest thermoelectric figure of merit reported for solution-processed SnTe. |
format | Online Article Text |
id | pubmed-6588270 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-65882702019-06-24 Ligand-Mediated Band Engineering in Bottom-Up Assembled SnTe Nanocomposites for Thermoelectric Energy Conversion Ibáñez, Maria Hasler, Roger Genç, Aziz Liu, Yu Kuster, Beatrice Schuster, Maximilian Dobrozhan, Oleksandr Cadavid, Doris Arbiol, Jordi Cabot, Andreu Kovalenko, Maksym V. J Am Chem Soc [Image: see text] The bottom-up assembly of colloidal nanocrystals is a versatile methodology to produce composite nanomaterials with precisely tuned electronic properties. Beyond the synthetic control over crystal domain size, shape, crystal phase, and composition, solution-processed nanocrystals allow exquisite surface engineering. This provides additional means to modulate the nanomaterial characteristics and particularly its electronic transport properties. For instance, inorganic surface ligands can be used to tune the type and concentration of majority carriers or to modify the electronic band structure. Herein, we report the thermoelectric properties of SnTe nanocomposites obtained from the consolidation of surface-engineered SnTe nanocrystals into macroscopic pellets. A CdSe-based ligand is selected to (i) converge the light and heavy bands through partial Cd alloying and (ii) generate CdSe nanoinclusions as a secondary phase within the SnTe matrix, thereby reducing the thermal conductivity. These SnTe-CdSe nanocomposites possess thermoelectric figures of merit of up to 1.3 at 850 K, which is, to the best of our knowledge, the highest thermoelectric figure of merit reported for solution-processed SnTe. American Chemical Society 2019-04-19 2019-05-22 /pmc/articles/PMC6588270/ /pubmed/31017419 http://dx.doi.org/10.1021/jacs.9b01394 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Ibáñez, Maria Hasler, Roger Genç, Aziz Liu, Yu Kuster, Beatrice Schuster, Maximilian Dobrozhan, Oleksandr Cadavid, Doris Arbiol, Jordi Cabot, Andreu Kovalenko, Maksym V. Ligand-Mediated Band Engineering in Bottom-Up Assembled SnTe Nanocomposites for Thermoelectric Energy Conversion |
title | Ligand-Mediated
Band Engineering in Bottom-Up Assembled
SnTe Nanocomposites for Thermoelectric Energy Conversion |
title_full | Ligand-Mediated
Band Engineering in Bottom-Up Assembled
SnTe Nanocomposites for Thermoelectric Energy Conversion |
title_fullStr | Ligand-Mediated
Band Engineering in Bottom-Up Assembled
SnTe Nanocomposites for Thermoelectric Energy Conversion |
title_full_unstemmed | Ligand-Mediated
Band Engineering in Bottom-Up Assembled
SnTe Nanocomposites for Thermoelectric Energy Conversion |
title_short | Ligand-Mediated
Band Engineering in Bottom-Up Assembled
SnTe Nanocomposites for Thermoelectric Energy Conversion |
title_sort | ligand-mediated
band engineering in bottom-up assembled
snte nanocomposites for thermoelectric energy conversion |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588270/ https://www.ncbi.nlm.nih.gov/pubmed/31017419 http://dx.doi.org/10.1021/jacs.9b01394 |
work_keys_str_mv | AT ibanezmaria ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion AT haslerroger ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion AT gencaziz ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion AT liuyu ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion AT kusterbeatrice ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion AT schustermaximilian ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion AT dobrozhanoleksandr ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion AT cadaviddoris ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion AT arbioljordi ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion AT cabotandreu ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion AT kovalenkomaksymv ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion |