Cargando…

Ligand-Mediated Band Engineering in Bottom-Up Assembled SnTe Nanocomposites for Thermoelectric Energy Conversion

[Image: see text] The bottom-up assembly of colloidal nanocrystals is a versatile methodology to produce composite nanomaterials with precisely tuned electronic properties. Beyond the synthetic control over crystal domain size, shape, crystal phase, and composition, solution-processed nanocrystals a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ibáñez, Maria, Hasler, Roger, Genç, Aziz, Liu, Yu, Kuster, Beatrice, Schuster, Maximilian, Dobrozhan, Oleksandr, Cadavid, Doris, Arbiol, Jordi, Cabot, Andreu, Kovalenko, Maksym V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588270/
https://www.ncbi.nlm.nih.gov/pubmed/31017419
http://dx.doi.org/10.1021/jacs.9b01394
_version_ 1783429222697533440
author Ibáñez, Maria
Hasler, Roger
Genç, Aziz
Liu, Yu
Kuster, Beatrice
Schuster, Maximilian
Dobrozhan, Oleksandr
Cadavid, Doris
Arbiol, Jordi
Cabot, Andreu
Kovalenko, Maksym V.
author_facet Ibáñez, Maria
Hasler, Roger
Genç, Aziz
Liu, Yu
Kuster, Beatrice
Schuster, Maximilian
Dobrozhan, Oleksandr
Cadavid, Doris
Arbiol, Jordi
Cabot, Andreu
Kovalenko, Maksym V.
author_sort Ibáñez, Maria
collection PubMed
description [Image: see text] The bottom-up assembly of colloidal nanocrystals is a versatile methodology to produce composite nanomaterials with precisely tuned electronic properties. Beyond the synthetic control over crystal domain size, shape, crystal phase, and composition, solution-processed nanocrystals allow exquisite surface engineering. This provides additional means to modulate the nanomaterial characteristics and particularly its electronic transport properties. For instance, inorganic surface ligands can be used to tune the type and concentration of majority carriers or to modify the electronic band structure. Herein, we report the thermoelectric properties of SnTe nanocomposites obtained from the consolidation of surface-engineered SnTe nanocrystals into macroscopic pellets. A CdSe-based ligand is selected to (i) converge the light and heavy bands through partial Cd alloying and (ii) generate CdSe nanoinclusions as a secondary phase within the SnTe matrix, thereby reducing the thermal conductivity. These SnTe-CdSe nanocomposites possess thermoelectric figures of merit of up to 1.3 at 850 K, which is, to the best of our knowledge, the highest thermoelectric figure of merit reported for solution-processed SnTe.
format Online
Article
Text
id pubmed-6588270
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-65882702019-06-24 Ligand-Mediated Band Engineering in Bottom-Up Assembled SnTe Nanocomposites for Thermoelectric Energy Conversion Ibáñez, Maria Hasler, Roger Genç, Aziz Liu, Yu Kuster, Beatrice Schuster, Maximilian Dobrozhan, Oleksandr Cadavid, Doris Arbiol, Jordi Cabot, Andreu Kovalenko, Maksym V. J Am Chem Soc [Image: see text] The bottom-up assembly of colloidal nanocrystals is a versatile methodology to produce composite nanomaterials with precisely tuned electronic properties. Beyond the synthetic control over crystal domain size, shape, crystal phase, and composition, solution-processed nanocrystals allow exquisite surface engineering. This provides additional means to modulate the nanomaterial characteristics and particularly its electronic transport properties. For instance, inorganic surface ligands can be used to tune the type and concentration of majority carriers or to modify the electronic band structure. Herein, we report the thermoelectric properties of SnTe nanocomposites obtained from the consolidation of surface-engineered SnTe nanocrystals into macroscopic pellets. A CdSe-based ligand is selected to (i) converge the light and heavy bands through partial Cd alloying and (ii) generate CdSe nanoinclusions as a secondary phase within the SnTe matrix, thereby reducing the thermal conductivity. These SnTe-CdSe nanocomposites possess thermoelectric figures of merit of up to 1.3 at 850 K, which is, to the best of our knowledge, the highest thermoelectric figure of merit reported for solution-processed SnTe. American Chemical Society 2019-04-19 2019-05-22 /pmc/articles/PMC6588270/ /pubmed/31017419 http://dx.doi.org/10.1021/jacs.9b01394 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Ibáñez, Maria
Hasler, Roger
Genç, Aziz
Liu, Yu
Kuster, Beatrice
Schuster, Maximilian
Dobrozhan, Oleksandr
Cadavid, Doris
Arbiol, Jordi
Cabot, Andreu
Kovalenko, Maksym V.
Ligand-Mediated Band Engineering in Bottom-Up Assembled SnTe Nanocomposites for Thermoelectric Energy Conversion
title Ligand-Mediated Band Engineering in Bottom-Up Assembled SnTe Nanocomposites for Thermoelectric Energy Conversion
title_full Ligand-Mediated Band Engineering in Bottom-Up Assembled SnTe Nanocomposites for Thermoelectric Energy Conversion
title_fullStr Ligand-Mediated Band Engineering in Bottom-Up Assembled SnTe Nanocomposites for Thermoelectric Energy Conversion
title_full_unstemmed Ligand-Mediated Band Engineering in Bottom-Up Assembled SnTe Nanocomposites for Thermoelectric Energy Conversion
title_short Ligand-Mediated Band Engineering in Bottom-Up Assembled SnTe Nanocomposites for Thermoelectric Energy Conversion
title_sort ligand-mediated band engineering in bottom-up assembled snte nanocomposites for thermoelectric energy conversion
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588270/
https://www.ncbi.nlm.nih.gov/pubmed/31017419
http://dx.doi.org/10.1021/jacs.9b01394
work_keys_str_mv AT ibanezmaria ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion
AT haslerroger ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion
AT gencaziz ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion
AT liuyu ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion
AT kusterbeatrice ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion
AT schustermaximilian ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion
AT dobrozhanoleksandr ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion
AT cadaviddoris ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion
AT arbioljordi ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion
AT cabotandreu ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion
AT kovalenkomaksymv ligandmediatedbandengineeringinbottomupassembledsntenanocompositesforthermoelectricenergyconversion