Cargando…
Dropout and transfer paths: What are the risky profiles when analyzing university persistence with machine learning techniques?
University dropout is a growing problem with considerable academic, social and economic consequences. Conclusions and limitations of previous studies highlight the difficulty of analyzing the phenomenon from a broad perspective and with bigger data sets. This paper proposes a new, machine-learning b...
Autores principales: | Rodríguez-Muñiz, Luis J., Bernardo, Ana B., Esteban, María, Díaz, Irene |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588340/ https://www.ncbi.nlm.nih.gov/pubmed/31226158 http://dx.doi.org/10.1371/journal.pone.0218796 |
Ejemplares similares
-
Predictive model of the dropout intention of Chilean university students
por: López-Angulo, Yaranay, et al.
Publicado: (2023) -
Polar Chromosomes—Challenges of a Risky Path
por: Vukušić, Kruno, et al.
Publicado: (2022) -
Risky business: rhesus monkeys exhibit persistent preferences for risky options
por: Xu, Eric R., et al.
Publicado: (2014) -
Differential dropout and bias in randomised controlled trials: when it matters and when it may not
por: Bell, Melanie L, et al.
Publicado: (2013) -
Persistence and Dropout in Higher Online Education: Review and Categorization of Factors
por: Shaikh, Umair Uddin, et al.
Publicado: (2022)