Cargando…
2D-IR spectroscopy for oil paint conservation: Elucidating the water-sensitive structure of zinc carboxylate clusters in ionomers
The molecular structure around metal ions in polymer materials has puzzled researchers for decades. This question has acquired new relevance with the discovery that aged oil paint binders can adopt an ionomer structure when metal ions leached from pigments bind to carboxylate groups on the polymeriz...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588360/ https://www.ncbi.nlm.nih.gov/pubmed/31245541 http://dx.doi.org/10.1126/sciadv.aaw3592 |
Sumario: | The molecular structure around metal ions in polymer materials has puzzled researchers for decades. This question has acquired new relevance with the discovery that aged oil paint binders can adopt an ionomer structure when metal ions leached from pigments bind to carboxylate groups on the polymerized oil network. The characteristics of the metal-polymer structure are expected to have important consequences for the rate of oil paint degradation reactions such as metal soap formation and oil hydrolysis. Here, we use two-dimensional infrared (2D-IR) spectroscopy to demonstrate that zinc carboxylates formed in paint films containing zinc white pigment adopt either a coordination chain– or an oxo-type cluster structure. Moreover, it was found that the presence of water governs the relative concentration of these two types of zinc carboxylate coordination. The results pave the way for a molecular approach to paintings conservation and the application of 2D-IR spectroscopy to the study of polymer structure. |
---|