Cargando…
Excitation of coherent second sound waves in a dense magnon gas
Second sound is a quantum mechanical effect manifesting itself as a wave-like (in contrast with diffusion) heat transfer, or energy propagation, in a gas of quasi-particles. So far, this phenomenon has been observed only in an equilibrium gas of phonons existing in liquid/solid helium, or in dielect...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588561/ https://www.ncbi.nlm.nih.gov/pubmed/31227729 http://dx.doi.org/10.1038/s41598-019-44956-z |
Sumario: | Second sound is a quantum mechanical effect manifesting itself as a wave-like (in contrast with diffusion) heat transfer, or energy propagation, in a gas of quasi-particles. So far, this phenomenon has been observed only in an equilibrium gas of phonons existing in liquid/solid helium, or in dielectric crystals (Bi, NaF) at low temperatures. Here, we report observation of a room-temperature magnonic second sound, or a wave-like transport of both energy and spin angular momentum, in a quasi-equilibrium gas of magnons undergoing Bose-Einstein condensation (BEC) in a ferrite film. Due to the contact of the magnon gas with pumping photons and phonons, dispersion of the magnonic second sound differ qualitatively from the phononic case, as there is no diffusion regime, and the second sound velocity remains finite at low wavenumbers. Formation of BEC in the gas of magnons modifies the second sound properties by creating an additional channel of energy relaxation. |
---|