Cargando…
Learning cellular morphology with neural networks
Reconstruction and annotation of volume electron microscopy data sets of brain tissue is challenging but can reveal invaluable information about neuronal circuits. Significant progress has recently been made in automated neuron reconstruction as well as automated detection of synapses. However, meth...
Autores principales: | Schubert, Philipp J., Dorkenwald, Sven, Januszewski, Michał, Jain, Viren, Kornfeld, Joergen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588634/ https://www.ncbi.nlm.nih.gov/pubmed/31227718 http://dx.doi.org/10.1038/s41467-019-10836-3 |
Ejemplares similares
-
SyConn2: dense synaptic connectivity inference for volume electron microscopy
por: Schubert, Philipp J., et al.
Publicado: (2022) -
Automated synapse-level reconstruction of neural circuits in the larval zebrafish brain
por: Svara, Fabian, et al.
Publicado: (2022) -
Transfer Learning with Deep Convolutional Neural Networks for Classifying Cellular Morphological Changes
por: Kensert, Alexander, et al.
Publicado: (2019) -
Reconfigurable cellular neural networks and their applications
por: Yalçın, Müştak E, et al.
Publicado: (2019) -
Cellular neural networks dynamics and modelling
por: Slavova, Angela
Publicado: (2003)