Cargando…
On Ev-Degree and Ve-Degree Topological Properties of Tickysim Spiking Neural Network
Topological indices are indispensable tools for analyzing networks to understand the underlying topology of these networks. Spiking neural network architecture (SpiNNaker or TSNN) is a million-core calculating engine which aims at simulating the behavior of aggregates of up to a billion neurons in r...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589261/ https://www.ncbi.nlm.nih.gov/pubmed/31281340 http://dx.doi.org/10.1155/2019/8429120 |
Sumario: | Topological indices are indispensable tools for analyzing networks to understand the underlying topology of these networks. Spiking neural network architecture (SpiNNaker or TSNN) is a million-core calculating engine which aims at simulating the behavior of aggregates of up to a billion neurons in real time. Tickysim is a timing-based simulator of the interchip interconnection network of the SpiNNaker architecture. Tickysim spiking neural network is considered to be highly symmetrical network classes. Classical degree-based topological properties of Tickysim spiking neural network have been recently determined. Ev-degree and ve-degree concepts are two novel degrees recently defined in graph theory. Ev-degree and ve-degree topological indices have been defined as parallel to their corresponding counterparts. In this study, we investigate the ev-degree and ve-degree topological properties of Tickysim spiking neural network. These calculations give the information about the underlying topology of Tickysim spiking neural network. |
---|