Cargando…
Attention-Based Personalized Encoder-Decoder Model for Local Citation Recommendation
With a tremendous growth in the number of scientific papers, researchers have to spend too much time and struggle to find the appropriate papers they are looking for. Local citation recommendation that provides a list of references based on a text segment could alleviate the problem. Most existing l...
Autores principales: | Yang, Libin, Zhang, Zeqing, Cai, Xiaoyan, Dai, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589290/ https://www.ncbi.nlm.nih.gov/pubmed/31281332 http://dx.doi.org/10.1155/2019/1232581 |
Ejemplares similares
-
Semantic Modelling of Citation Contexts for Context-Aware Citation Recommendation
por: Saier, Tarek, et al.
Publicado: (2020) -
Halcyon: an accurate basecaller exploiting an encoder–decoder model with monotonic attention
por: Konishi, Hiroki, et al.
Publicado: (2020) -
Knowledge Tracing via Attention Enhanced Encoder-Decoder
por: Zhang, Kai, et al.
Publicado: (2022) -
Efficient attention-based deep encoder and decoder for automatic crack segmentation
por: Kang, Dong H, et al.
Publicado: (2021) -
A hierarchical temporal attention-based LSTM encoder-decoder model for individual mobility prediction
por: Li, Fa, et al.
Publicado: (2020)