Cargando…

Integration of a Galdieria plasma membrane sugar transporter enables heterotrophic growth of the obligate photoautotrophic red alga Cynanidioschyzon merolae

The unicellular thermoacidophilic red alga Cyanidioschyzon merolae is an emerging model organism of photosynthetic eukaryotes. Its relatively simple genome (16.5 Mbp) with very low‐genetic redundancy and its cellular structure possessing one chloroplast, mitochondrion, peroxisome, and other organell...

Descripción completa

Detalles Bibliográficos
Autores principales: Fujiwara, Takayuki, Hirooka, Shunsuke, Mukai, Mizuna, Ohbayashi, Ryudo, kanesaki, Yu, Watanabe, Satoru, Miyagishima, Shin‐ya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589524/
https://www.ncbi.nlm.nih.gov/pubmed/31245772
http://dx.doi.org/10.1002/pld3.134
_version_ 1783429402360545280
author Fujiwara, Takayuki
Hirooka, Shunsuke
Mukai, Mizuna
Ohbayashi, Ryudo
kanesaki, Yu
Watanabe, Satoru
Miyagishima, Shin‐ya
author_facet Fujiwara, Takayuki
Hirooka, Shunsuke
Mukai, Mizuna
Ohbayashi, Ryudo
kanesaki, Yu
Watanabe, Satoru
Miyagishima, Shin‐ya
author_sort Fujiwara, Takayuki
collection PubMed
description The unicellular thermoacidophilic red alga Cyanidioschyzon merolae is an emerging model organism of photosynthetic eukaryotes. Its relatively simple genome (16.5 Mbp) with very low‐genetic redundancy and its cellular structure possessing one chloroplast, mitochondrion, peroxisome, and other organelles have facilitated studies. In addition, this alga is genetically tractable, and the nuclear and chloroplast genomes can be modified by integration of transgenes via homologous recombination. Recent studies have attempted to clarify the structure and function of the photosystems of this alga. However, it is difficult to obtain photosynthesis‐defective mutants for molecular genetic studies because this organism is an obligate autotroph. To overcome this issue in C. merolae, we expressed a plasma membrane sugar transporter, GsSPT1, from Galdieria sulphuraria, which is an evolutionary relative of C. merolae and capable of heterotrophic growth. The heterologously expressed GsSPT1 localized at the plasma membrane. GsSPT1 enabled C. merolae to grow mixotrophically and heterotrophically, in which cells grew in the dark with glucose or in the light with a photosynthetic inhibitor 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea (DCMU) and glucose. When the GsSPT1 transgene multiplied on the C. merolae chromosome via the URA (Cm‐Gs) selection marker, which can multiply itself and its flanking transgene, GsSPT1 protein level increased and the heterotrophic and mixotrophic growth of the transformant accelerated. We also found that GsSPT1 overexpressing C. merolae efficiently formed colonies on solidified medium under light with glucose and DCMU. Thus, GsSPT1 overexpresser will facilitate single colony isolation and analyses of photosynthesis‐deficient mutants produced either by random or site‐directed mutagenesis. In addition, our results yielded evidence supporting that the presence or absence of plasma membrane sugar transporters is a major cause of difference in trophic properties between C. merolae and G. sulphuraria.
format Online
Article
Text
id pubmed-6589524
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-65895242019-06-26 Integration of a Galdieria plasma membrane sugar transporter enables heterotrophic growth of the obligate photoautotrophic red alga Cynanidioschyzon merolae Fujiwara, Takayuki Hirooka, Shunsuke Mukai, Mizuna Ohbayashi, Ryudo kanesaki, Yu Watanabe, Satoru Miyagishima, Shin‐ya Plant Direct Original Research The unicellular thermoacidophilic red alga Cyanidioschyzon merolae is an emerging model organism of photosynthetic eukaryotes. Its relatively simple genome (16.5 Mbp) with very low‐genetic redundancy and its cellular structure possessing one chloroplast, mitochondrion, peroxisome, and other organelles have facilitated studies. In addition, this alga is genetically tractable, and the nuclear and chloroplast genomes can be modified by integration of transgenes via homologous recombination. Recent studies have attempted to clarify the structure and function of the photosystems of this alga. However, it is difficult to obtain photosynthesis‐defective mutants for molecular genetic studies because this organism is an obligate autotroph. To overcome this issue in C. merolae, we expressed a plasma membrane sugar transporter, GsSPT1, from Galdieria sulphuraria, which is an evolutionary relative of C. merolae and capable of heterotrophic growth. The heterologously expressed GsSPT1 localized at the plasma membrane. GsSPT1 enabled C. merolae to grow mixotrophically and heterotrophically, in which cells grew in the dark with glucose or in the light with a photosynthetic inhibitor 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea (DCMU) and glucose. When the GsSPT1 transgene multiplied on the C. merolae chromosome via the URA (Cm‐Gs) selection marker, which can multiply itself and its flanking transgene, GsSPT1 protein level increased and the heterotrophic and mixotrophic growth of the transformant accelerated. We also found that GsSPT1 overexpressing C. merolae efficiently formed colonies on solidified medium under light with glucose and DCMU. Thus, GsSPT1 overexpresser will facilitate single colony isolation and analyses of photosynthesis‐deficient mutants produced either by random or site‐directed mutagenesis. In addition, our results yielded evidence supporting that the presence or absence of plasma membrane sugar transporters is a major cause of difference in trophic properties between C. merolae and G. sulphuraria. John Wiley and Sons Inc. 2019-04-08 /pmc/articles/PMC6589524/ /pubmed/31245772 http://dx.doi.org/10.1002/pld3.134 Text en © 2019 The Authors. Plant Direct published by American Society of Plant Biologists, Society for Experimental Biology and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research
Fujiwara, Takayuki
Hirooka, Shunsuke
Mukai, Mizuna
Ohbayashi, Ryudo
kanesaki, Yu
Watanabe, Satoru
Miyagishima, Shin‐ya
Integration of a Galdieria plasma membrane sugar transporter enables heterotrophic growth of the obligate photoautotrophic red alga Cynanidioschyzon merolae
title Integration of a Galdieria plasma membrane sugar transporter enables heterotrophic growth of the obligate photoautotrophic red alga Cynanidioschyzon merolae
title_full Integration of a Galdieria plasma membrane sugar transporter enables heterotrophic growth of the obligate photoautotrophic red alga Cynanidioschyzon merolae
title_fullStr Integration of a Galdieria plasma membrane sugar transporter enables heterotrophic growth of the obligate photoautotrophic red alga Cynanidioschyzon merolae
title_full_unstemmed Integration of a Galdieria plasma membrane sugar transporter enables heterotrophic growth of the obligate photoautotrophic red alga Cynanidioschyzon merolae
title_short Integration of a Galdieria plasma membrane sugar transporter enables heterotrophic growth of the obligate photoautotrophic red alga Cynanidioschyzon merolae
title_sort integration of a galdieria plasma membrane sugar transporter enables heterotrophic growth of the obligate photoautotrophic red alga cynanidioschyzon merolae
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589524/
https://www.ncbi.nlm.nih.gov/pubmed/31245772
http://dx.doi.org/10.1002/pld3.134
work_keys_str_mv AT fujiwaratakayuki integrationofagaldieriaplasmamembranesugartransporterenablesheterotrophicgrowthoftheobligatephotoautotrophicredalgacynanidioschyzonmerolae
AT hirookashunsuke integrationofagaldieriaplasmamembranesugartransporterenablesheterotrophicgrowthoftheobligatephotoautotrophicredalgacynanidioschyzonmerolae
AT mukaimizuna integrationofagaldieriaplasmamembranesugartransporterenablesheterotrophicgrowthoftheobligatephotoautotrophicredalgacynanidioschyzonmerolae
AT ohbayashiryudo integrationofagaldieriaplasmamembranesugartransporterenablesheterotrophicgrowthoftheobligatephotoautotrophicredalgacynanidioschyzonmerolae
AT kanesakiyu integrationofagaldieriaplasmamembranesugartransporterenablesheterotrophicgrowthoftheobligatephotoautotrophicredalgacynanidioschyzonmerolae
AT watanabesatoru integrationofagaldieriaplasmamembranesugartransporterenablesheterotrophicgrowthoftheobligatephotoautotrophicredalgacynanidioschyzonmerolae
AT miyagishimashinya integrationofagaldieriaplasmamembranesugartransporterenablesheterotrophicgrowthoftheobligatephotoautotrophicredalgacynanidioschyzonmerolae