Cargando…
LVAD Pump Flow Does Not Adequately Increase With Exercise
Left ventricular assist devices (LVADs) restore cardiovascular circulatory demand at rest with a spontaneous increase in pump flow to exercise. The relevant contribution of cardiac output provided by the LVAD and ejected through the aortic valve for exercises of different intensities has been barely...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589923/ https://www.ncbi.nlm.nih.gov/pubmed/30155903 http://dx.doi.org/10.1111/aor.13349 |
_version_ | 1783429453966213120 |
---|---|
author | Gross, Christoph Marko, Christiane Mikl, Johann Altenberger, Johann Schlöglhofer, Thomas Schima, Heinrich Zimpfer, Daniel Moscato, Francesco |
author_facet | Gross, Christoph Marko, Christiane Mikl, Johann Altenberger, Johann Schlöglhofer, Thomas Schima, Heinrich Zimpfer, Daniel Moscato, Francesco |
author_sort | Gross, Christoph |
collection | PubMed |
description | Left ventricular assist devices (LVADs) restore cardiovascular circulatory demand at rest with a spontaneous increase in pump flow to exercise. The relevant contribution of cardiac output provided by the LVAD and ejected through the aortic valve for exercises of different intensities has been barely investigated in patients. The hypothesis of this study was that different responses in continuous recorded pump parameters occur for maximal and submaximal intensity exercises and that the pump flow change has an impact on the oxygen uptake at peak exercise (pVO(2)). Cardiac and pump parameters such as LVAD flow rate (Q (LVAD)), heart rate (HR), and aortic valve (AV) opening were analyzed from continuously recorded LVAD data during physical exercises of maximal (bicycle ergometer test) and submaximal intensities (6‐min walk test and regular trainings). During all exercise sessions, the LVAD speed was kept constant. Cardiac and pump parameter responses of 16 patients for maximal and submaximal intensity exercises were similar for Q (LVAD): +0.89 ± 0.52 versus +0.59 ± 0.38 L/min (P = 0.07) and different for HR: +20.4 ± 15.4 versus +7.7 ± 5.8 bpm (P < 0.0001) and AV‐opening with 71% versus 23% of patients (P < 0.0001). Multi‐regression analysis with pVO(2) (R (2) = 0.77) showed relation to workload normalized by bodyweight (P = 0.0002), HR response (P = 0.001), AV‐opening (P = 0.02), and age (P = 0.06) whereas the change in Q (LVAD) was irrelevant. Constant speed LVADs provide inadequate support for maximum intensity exercises. AV‐opening and improvements in HR show an important role for higher exercise capacities and reflect exercise intensities. Changes in pump flow do not impact pVO(2) and are independent of AV‐opening and response in HR. An LVAD speed control may lead to adequate left ventricular support during strenuous physical activities. |
format | Online Article Text |
id | pubmed-6589923 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-65899232019-07-08 LVAD Pump Flow Does Not Adequately Increase With Exercise Gross, Christoph Marko, Christiane Mikl, Johann Altenberger, Johann Schlöglhofer, Thomas Schima, Heinrich Zimpfer, Daniel Moscato, Francesco Artif Organs Main Text Articles Left ventricular assist devices (LVADs) restore cardiovascular circulatory demand at rest with a spontaneous increase in pump flow to exercise. The relevant contribution of cardiac output provided by the LVAD and ejected through the aortic valve for exercises of different intensities has been barely investigated in patients. The hypothesis of this study was that different responses in continuous recorded pump parameters occur for maximal and submaximal intensity exercises and that the pump flow change has an impact on the oxygen uptake at peak exercise (pVO(2)). Cardiac and pump parameters such as LVAD flow rate (Q (LVAD)), heart rate (HR), and aortic valve (AV) opening were analyzed from continuously recorded LVAD data during physical exercises of maximal (bicycle ergometer test) and submaximal intensities (6‐min walk test and regular trainings). During all exercise sessions, the LVAD speed was kept constant. Cardiac and pump parameter responses of 16 patients for maximal and submaximal intensity exercises were similar for Q (LVAD): +0.89 ± 0.52 versus +0.59 ± 0.38 L/min (P = 0.07) and different for HR: +20.4 ± 15.4 versus +7.7 ± 5.8 bpm (P < 0.0001) and AV‐opening with 71% versus 23% of patients (P < 0.0001). Multi‐regression analysis with pVO(2) (R (2) = 0.77) showed relation to workload normalized by bodyweight (P = 0.0002), HR response (P = 0.001), AV‐opening (P = 0.02), and age (P = 0.06) whereas the change in Q (LVAD) was irrelevant. Constant speed LVADs provide inadequate support for maximum intensity exercises. AV‐opening and improvements in HR show an important role for higher exercise capacities and reflect exercise intensities. Changes in pump flow do not impact pVO(2) and are independent of AV‐opening and response in HR. An LVAD speed control may lead to adequate left ventricular support during strenuous physical activities. John Wiley and Sons Inc. 2018-11-18 2019-03 /pmc/articles/PMC6589923/ /pubmed/30155903 http://dx.doi.org/10.1111/aor.13349 Text en © 2018 The Authors. Artificial Organs published by Wiley Periodicals, Inc. on behalf of International Center for Artificial Organ and Transplantation (ICAOT) This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Main Text Articles Gross, Christoph Marko, Christiane Mikl, Johann Altenberger, Johann Schlöglhofer, Thomas Schima, Heinrich Zimpfer, Daniel Moscato, Francesco LVAD Pump Flow Does Not Adequately Increase With Exercise |
title | LVAD Pump Flow Does Not Adequately Increase With Exercise |
title_full | LVAD Pump Flow Does Not Adequately Increase With Exercise |
title_fullStr | LVAD Pump Flow Does Not Adequately Increase With Exercise |
title_full_unstemmed | LVAD Pump Flow Does Not Adequately Increase With Exercise |
title_short | LVAD Pump Flow Does Not Adequately Increase With Exercise |
title_sort | lvad pump flow does not adequately increase with exercise |
topic | Main Text Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589923/ https://www.ncbi.nlm.nih.gov/pubmed/30155903 http://dx.doi.org/10.1111/aor.13349 |
work_keys_str_mv | AT grosschristoph lvadpumpflowdoesnotadequatelyincreasewithexercise AT markochristiane lvadpumpflowdoesnotadequatelyincreasewithexercise AT mikljohann lvadpumpflowdoesnotadequatelyincreasewithexercise AT altenbergerjohann lvadpumpflowdoesnotadequatelyincreasewithexercise AT schloglhoferthomas lvadpumpflowdoesnotadequatelyincreasewithexercise AT schimaheinrich lvadpumpflowdoesnotadequatelyincreasewithexercise AT zimpferdaniel lvadpumpflowdoesnotadequatelyincreasewithexercise AT moscatofrancesco lvadpumpflowdoesnotadequatelyincreasewithexercise |