Cargando…
The use of prognostic scores for causal inference with general treatment regimes
In nonrandomised studies, inferring causal effects requires appropriate methods for addressing confounding bias. Although it is common to adopt propensity score analysis to this purpose, prognostic score analysis has recently been proposed as an alternative strategy. While both approaches were origi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590249/ https://www.ncbi.nlm.nih.gov/pubmed/30652333 http://dx.doi.org/10.1002/sim.8084 |
_version_ | 1783429518671740928 |
---|---|
author | Nguyen, Tri‐Long Debray, Thomas P.A. |
author_facet | Nguyen, Tri‐Long Debray, Thomas P.A. |
author_sort | Nguyen, Tri‐Long |
collection | PubMed |
description | In nonrandomised studies, inferring causal effects requires appropriate methods for addressing confounding bias. Although it is common to adopt propensity score analysis to this purpose, prognostic score analysis has recently been proposed as an alternative strategy. While both approaches were originally introduced to estimate causal effects for binary interventions, the theory of propensity score has since been extended to the case of general treatment regimes. Indeed, many treatments are not assigned in a binary fashion and require a certain extent of dosing. Hence, researchers may often be interested in estimating treatment effects across multiple exposures. To the best of our knowledge, the prognostic score analysis has not been yet generalised to this case. In this article, we describe the theory of prognostic scores for causal inference with general treatment regimes. Our methods can be applied to compare multiple treatments using nonrandomised data, a topic of great relevance in contemporary evaluations of clinical interventions. We propose estimators for the average treatment effects in different populations of interest, the validity of which is assessed through a series of simulations. Finally, we present an illustrative case in which we estimate the effect of the delay to Aspirin administration on a composite outcome of death or dependence at 6 months in stroke patients. |
format | Online Article Text |
id | pubmed-6590249 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-65902492019-07-08 The use of prognostic scores for causal inference with general treatment regimes Nguyen, Tri‐Long Debray, Thomas P.A. Stat Med Research Articles In nonrandomised studies, inferring causal effects requires appropriate methods for addressing confounding bias. Although it is common to adopt propensity score analysis to this purpose, prognostic score analysis has recently been proposed as an alternative strategy. While both approaches were originally introduced to estimate causal effects for binary interventions, the theory of propensity score has since been extended to the case of general treatment regimes. Indeed, many treatments are not assigned in a binary fashion and require a certain extent of dosing. Hence, researchers may often be interested in estimating treatment effects across multiple exposures. To the best of our knowledge, the prognostic score analysis has not been yet generalised to this case. In this article, we describe the theory of prognostic scores for causal inference with general treatment regimes. Our methods can be applied to compare multiple treatments using nonrandomised data, a topic of great relevance in contemporary evaluations of clinical interventions. We propose estimators for the average treatment effects in different populations of interest, the validity of which is assessed through a series of simulations. Finally, we present an illustrative case in which we estimate the effect of the delay to Aspirin administration on a composite outcome of death or dependence at 6 months in stroke patients. John Wiley and Sons Inc. 2019-01-16 2019-05-20 /pmc/articles/PMC6590249/ /pubmed/30652333 http://dx.doi.org/10.1002/sim.8084 Text en © 2019 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Articles Nguyen, Tri‐Long Debray, Thomas P.A. The use of prognostic scores for causal inference with general treatment regimes |
title | The use of prognostic scores for causal inference with general treatment regimes |
title_full | The use of prognostic scores for causal inference with general treatment regimes |
title_fullStr | The use of prognostic scores for causal inference with general treatment regimes |
title_full_unstemmed | The use of prognostic scores for causal inference with general treatment regimes |
title_short | The use of prognostic scores for causal inference with general treatment regimes |
title_sort | use of prognostic scores for causal inference with general treatment regimes |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590249/ https://www.ncbi.nlm.nih.gov/pubmed/30652333 http://dx.doi.org/10.1002/sim.8084 |
work_keys_str_mv | AT nguyentrilong theuseofprognosticscoresforcausalinferencewithgeneraltreatmentregimes AT debraythomaspa theuseofprognosticscoresforcausalinferencewithgeneraltreatmentregimes AT nguyentrilong useofprognosticscoresforcausalinferencewithgeneraltreatmentregimes AT debraythomaspa useofprognosticscoresforcausalinferencewithgeneraltreatmentregimes |