Cargando…
Deep Learning in Image Cytometry: A Review
Artificial intelligence, deep convolutional neural networks, and deep learning are all niche terms that are increasingly appearing in scientific presentations as well as in the general media. In this review, we focus on deep learning and how it is applied to microscopy image data of cells and tissue...
Autores principales: | Gupta, Anindya, Harrison, Philip J., Wieslander, Håkan, Pielawski, Nicolas, Kartasalo, Kimmo, Partel, Gabriele, Solorzano, Leslie, Suveer, Amit, Klemm, Anna H., Spjuth, Ola, Sintorn, Ida‐Maria, Wählby, Carolina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590257/ https://www.ncbi.nlm.nih.gov/pubmed/30565841 http://dx.doi.org/10.1002/cyto.a.23701 |
Ejemplares similares
-
Evaluating the utility of brightfield image data for mechanism of action prediction
por: Harrison, Philip John, et al.
Publicado: (2023) -
TEM image restoration from fast image streams
por: Wieslander, Håkan, et al.
Publicado: (2021) -
Rapid development of cloud-native intelligent data pipelines for scientific data streams using the HASTE Toolkit
por: Blamey, Ben, et al.
Publicado: (2021) -
TissUUmaps: interactive visualization of large-scale spatial gene expression and tissue morphology data
por: Solorzano, Leslie, et al.
Publicado: (2020) -
Automated identification of the mouse brain’s spatial compartments from in situ sequencing data
por: Partel, Gabriele, et al.
Publicado: (2020)