Cargando…

Divergent Metabolic Effects of Acute Versus Chronic Repeated Forced Swim Stress in the Rat

OBJECTIVE: This study sought to examine divergence regarding the impact of acute versus chronic repeated stress on energy balance. METHODS: Rats were exposed to either chronic repeated forced swim (FS) stress for 7 days or an acute stress (a single FS). Body weight and food intake were measured dail...

Descripción completa

Detalles Bibliográficos
Autores principales: Rabasa, Cristina, Askevik, Kaisa, Schéle, Erik, Hu, Min, Vogel, Heike, Dickson, Suzanne L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590371/
https://www.ncbi.nlm.nih.gov/pubmed/30703287
http://dx.doi.org/10.1002/oby.22390
Descripción
Sumario:OBJECTIVE: This study sought to examine divergence regarding the impact of acute versus chronic repeated stress on energy balance. METHODS: Rats were exposed to either chronic repeated forced swim (FS) stress for 7 days or an acute stress (a single FS). Body weight and food intake were measured daily. Metabolic parameters explored included brown adipose tissue (BAT) weight and activity. RESULTS: Chronic repeated FS stress decreased body weight and caloric efficiency. It also increased the relative weight of BAT. The same stressor delivered only once did not alter adrenal or BAT weight, but it did increase the metabolic activity of BAT. In stress‐naive rats, acute FS stress induced an anorexigenic response during the first day after the stressor that caused a reduction in body weight (that persisted for 4 days). By contrast, the chronic FS rats did not show an anorexigenic response after the final stressor, and there was no change in body weight during the following 4 days. CONCLUSIONS: Rats exposed to chronic repeated FS stress adapt to the stressor over time; they become less sensitive to its anorexigenic effects and its metabolic effects in BAT, adaptations that ultimately reduce sensitivity to the weight‐lowering effects of an acute stressor.