Cargando…
Modeling the activity burst in the initial phase of cellulose hydrolysis by the processive cellobiohydrolase Cel7A
The hydrolysis of cellulose by processive cellulases, such as exocellulase TrCel7A from Trichoderma reesei, is typically characterized by an initial burst of high activity followed by a slowdown, often leading to incomplete hydrolysis of the substrate. The origins of these limitations to cellulose h...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590443/ https://www.ncbi.nlm.nih.gov/pubmed/30515756 http://dx.doi.org/10.1002/bit.26889 |
_version_ | 1783429561258606592 |
---|---|
author | Petrášek, Zdeneˇk Eibinger, Manuel Nidetzky, Bernd |
author_facet | Petrášek, Zdeneˇk Eibinger, Manuel Nidetzky, Bernd |
author_sort | Petrášek, Zdeneˇk |
collection | PubMed |
description | The hydrolysis of cellulose by processive cellulases, such as exocellulase TrCel7A from Trichoderma reesei, is typically characterized by an initial burst of high activity followed by a slowdown, often leading to incomplete hydrolysis of the substrate. The origins of these limitations to cellulose hydrolysis are not yet fully understood. Here, we propose a new model for the initial phase of cellulose hydrolysis by processive cellulases, incorporating a bound but inactive enzyme state. The model, based on ordinary differential equations, accurately reproduces the activity burst and the subsequent slowdown of the cellulose hydrolysis and describes the experimental data equally well or better than the previously suggested model. We also derive steady‐state expressions that can be used to describe the pseudo‐steady state reached after the initial activity burst. Importantly, we show that the new model predicts the existence of an optimal enzyme‐substrate affinity at which the pseudo‐steady state hydrolysis rate is maximized. The model further allows the calculation of glucose production rate from the first cut in the processive run and reproduces the second activity burst commonly observed upon new enzyme addition. These results are expected to be applicable also to other processive enzymes. |
format | Online Article Text |
id | pubmed-6590443 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-65904432019-07-08 Modeling the activity burst in the initial phase of cellulose hydrolysis by the processive cellobiohydrolase Cel7A Petrášek, Zdeneˇk Eibinger, Manuel Nidetzky, Bernd Biotechnol Bioeng ARTICLES The hydrolysis of cellulose by processive cellulases, such as exocellulase TrCel7A from Trichoderma reesei, is typically characterized by an initial burst of high activity followed by a slowdown, often leading to incomplete hydrolysis of the substrate. The origins of these limitations to cellulose hydrolysis are not yet fully understood. Here, we propose a new model for the initial phase of cellulose hydrolysis by processive cellulases, incorporating a bound but inactive enzyme state. The model, based on ordinary differential equations, accurately reproduces the activity burst and the subsequent slowdown of the cellulose hydrolysis and describes the experimental data equally well or better than the previously suggested model. We also derive steady‐state expressions that can be used to describe the pseudo‐steady state reached after the initial activity burst. Importantly, we show that the new model predicts the existence of an optimal enzyme‐substrate affinity at which the pseudo‐steady state hydrolysis rate is maximized. The model further allows the calculation of glucose production rate from the first cut in the processive run and reproduces the second activity burst commonly observed upon new enzyme addition. These results are expected to be applicable also to other processive enzymes. John Wiley and Sons Inc. 2019-01-08 2019-03 /pmc/articles/PMC6590443/ /pubmed/30515756 http://dx.doi.org/10.1002/bit.26889 Text en © 2018 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | ARTICLES Petrášek, Zdeneˇk Eibinger, Manuel Nidetzky, Bernd Modeling the activity burst in the initial phase of cellulose hydrolysis by the processive cellobiohydrolase Cel7A |
title | Modeling the activity burst in the initial phase of cellulose hydrolysis by the processive cellobiohydrolase Cel7A |
title_full | Modeling the activity burst in the initial phase of cellulose hydrolysis by the processive cellobiohydrolase Cel7A |
title_fullStr | Modeling the activity burst in the initial phase of cellulose hydrolysis by the processive cellobiohydrolase Cel7A |
title_full_unstemmed | Modeling the activity burst in the initial phase of cellulose hydrolysis by the processive cellobiohydrolase Cel7A |
title_short | Modeling the activity burst in the initial phase of cellulose hydrolysis by the processive cellobiohydrolase Cel7A |
title_sort | modeling the activity burst in the initial phase of cellulose hydrolysis by the processive cellobiohydrolase cel7a |
topic | ARTICLES |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590443/ https://www.ncbi.nlm.nih.gov/pubmed/30515756 http://dx.doi.org/10.1002/bit.26889 |
work_keys_str_mv | AT petrasekzdeneˇk modelingtheactivityburstintheinitialphaseofcellulosehydrolysisbytheprocessivecellobiohydrolasecel7a AT eibingermanuel modelingtheactivityburstintheinitialphaseofcellulosehydrolysisbytheprocessivecellobiohydrolasecel7a AT nidetzkybernd modelingtheactivityburstintheinitialphaseofcellulosehydrolysisbytheprocessivecellobiohydrolasecel7a |