Cargando…
Direct Cellularity Estimation on Breast Cancer Histopathology Images Using Transfer Learning
Residual cancer burden (RCB) has been proposed to measure the postneoadjuvant breast cancer response. In the workflow of RCB assessment, estimation of cancer cellularity is a critical task, which is conventionally achieved by manually reviewing the hematoxylin and eosin- (H&E-) stained microscop...
Autores principales: | Pei, Ziang, Cao, Shuangliang, Lu, Lijun, Chen, Wufan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590493/ https://www.ncbi.nlm.nih.gov/pubmed/31281408 http://dx.doi.org/10.1155/2019/3041250 |
Ejemplares similares
-
Classification of Breast Cancer Histopathological Images Using DenseNet and Transfer Learning
por: Wakili, Musa Adamu, et al.
Publicado: (2022) -
Chaotic Sparrow Search Algorithm with Deep Transfer Learning Enabled Breast Cancer Classification on Histopathological Images
por: Shankar, K., et al.
Publicado: (2022) -
Artificial Hummingbird Algorithm with Transfer-Learning-Based Mitotic Nuclei Classification on Histopathologic Breast Cancer Images
por: Malibari, Areej A., et al.
Publicado: (2023) -
Transfer Learning Approach for Classification of Histopathology Whole Slide Images
por: Ahmed, Shakil, et al.
Publicado: (2021) -
Deep Learning Based Analysis of Histopathological Images of Breast Cancer
por: Xie, Juanying, et al.
Publicado: (2019)