Cargando…
Inverse heat transfer problem solution of sounding rocket using moving window optimization
An Inverse Heat Transfer Problem is solved for a sounding rocket module given its geometry and measured temperature profile. The solution is obtained via moving window optimization, a technique for solving inverse dynamics. An analysis is performed to modify the method to avoid oscillatory behavior...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590812/ https://www.ncbi.nlm.nih.gov/pubmed/31233533 http://dx.doi.org/10.1371/journal.pone.0218600 |
Sumario: | An Inverse Heat Transfer Problem is solved for a sounding rocket module given its geometry and measured temperature profile. The solution is obtained via moving window optimization, a technique for solving inverse dynamics. An analysis is performed to modify the method to avoid oscillatory behavior of the resulting heat flux profile. The method parameters are tuned in relation to characteristic phases of the flight. Results are presented and correlated with measured flight data. Conclusions are drawn for better experiments for measuring heat flux on a sounding rocket skin. |
---|