Cargando…
Enhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesions
BACKGROUND: In recent months, multiple publications have demonstrated the use of convolutional neural networks (CNN) to classify images of skin cancer as precisely as dermatologists. However, these CNNs failed to outperform the International Symposium on Biomedical Imaging (ISBI) 2016 challenge whic...
Autores principales: | Brinker, Titus J., Hekler, Achim, Enk, Alexander H., von Kalle, Christof |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590821/ https://www.ncbi.nlm.nih.gov/pubmed/31233565 http://dx.doi.org/10.1371/journal.pone.0218713 |
Ejemplares similares
-
Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review
por: Brinker, Titus Josef, et al.
Publicado: (2018) -
Utilizing convolutional neural networks to classify monkeypox skin lesions
por: Eliwa, Entesar Hamed I., et al.
Publicado: (2023) -
Teledermatology: Comparison of Store-and-Forward Versus Live Interactive Video Conferencing
por: Brinker, Titus Josef, et al.
Publicado: (2018) -
Uncertainty Estimation in Medical Image Classification: Systematic Review
por: Kurz, Alexander, et al.
Publicado: (2022) -
Integrating Patient Data Into Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review
por: Höhn, Julia, et al.
Publicado: (2021)