Cargando…
Defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems
Grass species selection and regular mowing are essential for maintaining aesthetic and environmentally sound turfgrass systems. However, their impacts on the soil microbial community, the driving force for soil N cycle and thus the environmental fate of N, are largely unknown. Here, the high through...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590823/ https://www.ncbi.nlm.nih.gov/pubmed/31233561 http://dx.doi.org/10.1371/journal.pone.0218967 |
_version_ | 1783429634930507776 |
---|---|
author | Xia, Qing Chen, Huaihai Yang, Tianyou Miller, Grady Shi, Wei |
author_facet | Xia, Qing Chen, Huaihai Yang, Tianyou Miller, Grady Shi, Wei |
author_sort | Xia, Qing |
collection | PubMed |
description | Grass species selection and regular mowing are essential for maintaining aesthetic and environmentally sound turfgrass systems. However, their impacts on the soil microbial community, the driving force for soil N cycle and thus the environmental fate of N, are largely unknown. Here, the high throughput sequencing of 16S rRNA gene and internal transcribed spacer (ITS) region was used to evaluate how long-term defoliation management and grass growth habits (propagation types and photosynthetic pathways) modulated the soil microbial community. The investigation included three cool-season C3 grasses (creeping bentgrass, Kentucky bluegrass, and tall fescue) and three warm-season C4 grasses (bermudagrass, St. Augustinegrass, and zoysiagrass). Creeping bentgrass and bermudagrass were managed as putting greens with a lower mowing height; tall fescue spread in a tussock manner via tiller production whereas other grasses propagated in a creeping manner via rhizomes and/or stolons. Ordination analysis showed that both bacterial and fungal communities were primarily separated between putting green and non-putting green systems; and so were N-cycle gene relative abundances, with the putting greens being greater in N mineralization but lower in nitrification. Compared to warm-season grasses, cool-season grasses slightly and yet significantly enhanced the relative abundances of Chloroflexi, Verrucomicrobia, and Glomeromycota. Tall fescue yielded significantly greater bacterial and fungal richness than non-tussock grasses. As the main explanatory soil property, pH only contributed to < 18% of community compositional variations among turfgrass systems. Our results indicate that defoliation management was the main factor in shaping the soil microbial community and grass growth habits was secondary in modulating microbial taxon distribution. |
format | Online Article Text |
id | pubmed-6590823 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-65908232019-07-05 Defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems Xia, Qing Chen, Huaihai Yang, Tianyou Miller, Grady Shi, Wei PLoS One Research Article Grass species selection and regular mowing are essential for maintaining aesthetic and environmentally sound turfgrass systems. However, their impacts on the soil microbial community, the driving force for soil N cycle and thus the environmental fate of N, are largely unknown. Here, the high throughput sequencing of 16S rRNA gene and internal transcribed spacer (ITS) region was used to evaluate how long-term defoliation management and grass growth habits (propagation types and photosynthetic pathways) modulated the soil microbial community. The investigation included three cool-season C3 grasses (creeping bentgrass, Kentucky bluegrass, and tall fescue) and three warm-season C4 grasses (bermudagrass, St. Augustinegrass, and zoysiagrass). Creeping bentgrass and bermudagrass were managed as putting greens with a lower mowing height; tall fescue spread in a tussock manner via tiller production whereas other grasses propagated in a creeping manner via rhizomes and/or stolons. Ordination analysis showed that both bacterial and fungal communities were primarily separated between putting green and non-putting green systems; and so were N-cycle gene relative abundances, with the putting greens being greater in N mineralization but lower in nitrification. Compared to warm-season grasses, cool-season grasses slightly and yet significantly enhanced the relative abundances of Chloroflexi, Verrucomicrobia, and Glomeromycota. Tall fescue yielded significantly greater bacterial and fungal richness than non-tussock grasses. As the main explanatory soil property, pH only contributed to < 18% of community compositional variations among turfgrass systems. Our results indicate that defoliation management was the main factor in shaping the soil microbial community and grass growth habits was secondary in modulating microbial taxon distribution. Public Library of Science 2019-06-24 /pmc/articles/PMC6590823/ /pubmed/31233561 http://dx.doi.org/10.1371/journal.pone.0218967 Text en © 2019 Xia et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Xia, Qing Chen, Huaihai Yang, Tianyou Miller, Grady Shi, Wei Defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems |
title | Defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems |
title_full | Defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems |
title_fullStr | Defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems |
title_full_unstemmed | Defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems |
title_short | Defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems |
title_sort | defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590823/ https://www.ncbi.nlm.nih.gov/pubmed/31233561 http://dx.doi.org/10.1371/journal.pone.0218967 |
work_keys_str_mv | AT xiaqing defoliationmanagementandgrassgrowthhabitsmodulatedthesoilmicrobialcommunityofturfgrasssystems AT chenhuaihai defoliationmanagementandgrassgrowthhabitsmodulatedthesoilmicrobialcommunityofturfgrasssystems AT yangtianyou defoliationmanagementandgrassgrowthhabitsmodulatedthesoilmicrobialcommunityofturfgrasssystems AT millergrady defoliationmanagementandgrassgrowthhabitsmodulatedthesoilmicrobialcommunityofturfgrasssystems AT shiwei defoliationmanagementandgrassgrowthhabitsmodulatedthesoilmicrobialcommunityofturfgrasssystems |