Cargando…

Defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems

Grass species selection and regular mowing are essential for maintaining aesthetic and environmentally sound turfgrass systems. However, their impacts on the soil microbial community, the driving force for soil N cycle and thus the environmental fate of N, are largely unknown. Here, the high through...

Descripción completa

Detalles Bibliográficos
Autores principales: Xia, Qing, Chen, Huaihai, Yang, Tianyou, Miller, Grady, Shi, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590823/
https://www.ncbi.nlm.nih.gov/pubmed/31233561
http://dx.doi.org/10.1371/journal.pone.0218967
_version_ 1783429634930507776
author Xia, Qing
Chen, Huaihai
Yang, Tianyou
Miller, Grady
Shi, Wei
author_facet Xia, Qing
Chen, Huaihai
Yang, Tianyou
Miller, Grady
Shi, Wei
author_sort Xia, Qing
collection PubMed
description Grass species selection and regular mowing are essential for maintaining aesthetic and environmentally sound turfgrass systems. However, their impacts on the soil microbial community, the driving force for soil N cycle and thus the environmental fate of N, are largely unknown. Here, the high throughput sequencing of 16S rRNA gene and internal transcribed spacer (ITS) region was used to evaluate how long-term defoliation management and grass growth habits (propagation types and photosynthetic pathways) modulated the soil microbial community. The investigation included three cool-season C3 grasses (creeping bentgrass, Kentucky bluegrass, and tall fescue) and three warm-season C4 grasses (bermudagrass, St. Augustinegrass, and zoysiagrass). Creeping bentgrass and bermudagrass were managed as putting greens with a lower mowing height; tall fescue spread in a tussock manner via tiller production whereas other grasses propagated in a creeping manner via rhizomes and/or stolons. Ordination analysis showed that both bacterial and fungal communities were primarily separated between putting green and non-putting green systems; and so were N-cycle gene relative abundances, with the putting greens being greater in N mineralization but lower in nitrification. Compared to warm-season grasses, cool-season grasses slightly and yet significantly enhanced the relative abundances of Chloroflexi, Verrucomicrobia, and Glomeromycota. Tall fescue yielded significantly greater bacterial and fungal richness than non-tussock grasses. As the main explanatory soil property, pH only contributed to < 18% of community compositional variations among turfgrass systems. Our results indicate that defoliation management was the main factor in shaping the soil microbial community and grass growth habits was secondary in modulating microbial taxon distribution.
format Online
Article
Text
id pubmed-6590823
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-65908232019-07-05 Defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems Xia, Qing Chen, Huaihai Yang, Tianyou Miller, Grady Shi, Wei PLoS One Research Article Grass species selection and regular mowing are essential for maintaining aesthetic and environmentally sound turfgrass systems. However, their impacts on the soil microbial community, the driving force for soil N cycle and thus the environmental fate of N, are largely unknown. Here, the high throughput sequencing of 16S rRNA gene and internal transcribed spacer (ITS) region was used to evaluate how long-term defoliation management and grass growth habits (propagation types and photosynthetic pathways) modulated the soil microbial community. The investigation included three cool-season C3 grasses (creeping bentgrass, Kentucky bluegrass, and tall fescue) and three warm-season C4 grasses (bermudagrass, St. Augustinegrass, and zoysiagrass). Creeping bentgrass and bermudagrass were managed as putting greens with a lower mowing height; tall fescue spread in a tussock manner via tiller production whereas other grasses propagated in a creeping manner via rhizomes and/or stolons. Ordination analysis showed that both bacterial and fungal communities were primarily separated between putting green and non-putting green systems; and so were N-cycle gene relative abundances, with the putting greens being greater in N mineralization but lower in nitrification. Compared to warm-season grasses, cool-season grasses slightly and yet significantly enhanced the relative abundances of Chloroflexi, Verrucomicrobia, and Glomeromycota. Tall fescue yielded significantly greater bacterial and fungal richness than non-tussock grasses. As the main explanatory soil property, pH only contributed to < 18% of community compositional variations among turfgrass systems. Our results indicate that defoliation management was the main factor in shaping the soil microbial community and grass growth habits was secondary in modulating microbial taxon distribution. Public Library of Science 2019-06-24 /pmc/articles/PMC6590823/ /pubmed/31233561 http://dx.doi.org/10.1371/journal.pone.0218967 Text en © 2019 Xia et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Xia, Qing
Chen, Huaihai
Yang, Tianyou
Miller, Grady
Shi, Wei
Defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems
title Defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems
title_full Defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems
title_fullStr Defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems
title_full_unstemmed Defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems
title_short Defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems
title_sort defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590823/
https://www.ncbi.nlm.nih.gov/pubmed/31233561
http://dx.doi.org/10.1371/journal.pone.0218967
work_keys_str_mv AT xiaqing defoliationmanagementandgrassgrowthhabitsmodulatedthesoilmicrobialcommunityofturfgrasssystems
AT chenhuaihai defoliationmanagementandgrassgrowthhabitsmodulatedthesoilmicrobialcommunityofturfgrasssystems
AT yangtianyou defoliationmanagementandgrassgrowthhabitsmodulatedthesoilmicrobialcommunityofturfgrasssystems
AT millergrady defoliationmanagementandgrassgrowthhabitsmodulatedthesoilmicrobialcommunityofturfgrasssystems
AT shiwei defoliationmanagementandgrassgrowthhabitsmodulatedthesoilmicrobialcommunityofturfgrasssystems