Cargando…
Low-cost (<€5), open-source, potential alternative to commercial spectrophotometers
Spectrophotometry is a fundamental technique in many areas of science, with many applications and uses. The cost of spectrophotometers has acted as a barrier on the teaching and use of the technique. Here, we provide open-source plans to a 3D-printed cuvette holder with an interchangeable narrow–spe...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590830/ https://www.ncbi.nlm.nih.gov/pubmed/31188818 http://dx.doi.org/10.1371/journal.pbio.3000321 |
Sumario: | Spectrophotometry is a fundamental technique in many areas of science, with many applications and uses. The cost of spectrophotometers has acted as a barrier on the teaching and use of the technique. Here, we provide open-source plans to a 3D-printed cuvette holder with an interchangeable narrow–spectral bandwidth light-emitting diode (LED) block that can be used in conjunction with a smartphone’s ambient light sensor (ALS) to perform spectrophotometry. A Lego version with an interchangeable LED block is also presented. Results from the smartphone spectrophotometer in comparison with commercially available spectrophotometers demonstrated functionality, and the model may have many applications, especially in indirect spectrophotometry, such as in the protein assay shown here. The plans for the 3D-printed model are freely available on GitHub, as are editable files to allow customisation by users. We would encourage users to share adaptations with the scientific community. |
---|